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Abstract
The present article suggests a non-parametric test for seasonality

based on the work of Hewitt et al. (1971) and Rogerson (1996). The
new test is a generalized version of the previous tests which relaxes
their respective assumptions. An algorithm has been developed which
allows to empirically determine the distribution of the test statistic
using Monte Carlo simulation. This algorithm has been implemented
in various computer languages and tentatively been called NPST which
stands for Non-Parametric Seasonality Test. The implementations
have been checked for correctness and benchmarked for speed of exe-
cuting the code. The software can be obtained from the author.

1 Introduction
More than 2000 years ago, Hippocrates already pointed at the e�ect of sea-
sons on diseases. If diseases, and ultimately mortality, occur seasonally, �an
environmental factor has to be considered in the etiology of that disease�
(Marrero, 1983). Diseases like cardiovascular, cerebrovascular and respira-
tory diseases, which constitute more than half of all deaths in modern West-
ern societies, all show a pronounced seasonal pattern with a peak in winter
and a trough in summer (Eurowinter Group, 1997, 2000; Kunst et al., 1990;
Mackenbach et al., 1992; Rau, 2005; Yen et al., 2000).
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Despite the knowledge of seasonal e�ects on diseases for two millennia,
the de�nition and the measurement of seasonality has not been the center
of attention until Edwards (1961) developed a test based on a geometrical
framework which was speci�cally designed for seasonality. It turned out
to become �the most cited and the benchmark against which other tests are
evaluated� (Wallenstein et al., 1989, p. 817). In his article, Edwards explicitly
also mentions the possibility to estimate �cyclic trends� by considering �the
ranking order of the events which are above or below the median number�
(Edwards, 1961, p. 83). This idea has been taken up by Hewitt et al. (1971).
They did not use a binary indicator as suggested by Edwards but all the
ranking information.

Rogerson (1996) made a �rst step to generalize this test, relaxing the
relatively strict assumption of Hewitt et al. (1971) that seasonality is only
present if a six-month peak period is followed by a six-month trough pe-
riod. Rogerson allowed that the peak period can also last three, four, or �ve
months.

The present article with its associated software relaxes these assumptions
even further and allows total �exibility for the basic time duration as well as
for the length of the peak period. Hence, one is not restricted anymore to a
certain structure of the data. Weekly values, for example, do not have to be
converted anymore into monthly values. With the present implementation
it is possible to test, for example, whether there is a peak period of twelve
weeks during a year with 52 weeks.

2 Nonparametric Seasonality Tests
Based on a brief suggestion in Edwards (1961), Hewitt et al. (1971) elabo-
rated a non-parametric test based on rank sums. While Edwards suggested
�to consider the ranking order of the events which are above or below the
median number� (Edwards, 1961, p. 83), Hewitt et al. propose to use �all the
ranking information rather than a simple dichotomy� (Hewitt et al., 1971,
p. 175). According to them, the monthly frequencies are ranked. The month
with most occurrences (e.g. deaths) will have the value �12� assigned. Con-
sequently, �1� indicates the month having the least events or the lowest rate.
Keeping the original order of the months (e.g. starting with January and
ending with December), we can calculate the rank-sums of six consecutive
months (January�June, February�July, . . . , December�May). This rank-
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sum serves as the test statistic T to test the Null hypothesis of no seasonality
against the alternative hypothesis of seasonality in the data. T is symmet-
rically distributed and can reach a maximum value of 57 in this example
(12 + 11 + 10 + 9 + 8 + 7 = 57).

This test has the advantage that one �avoids the problem of specifying
a particular algebraic version� (Freedman, 1979, p. 225) of what is meant
by seasonal �uctuation. This test cannot be applied � as Reijneveld (1990)
points out � if there are ties. Ties, however, almost never occur in demo-
graphic applications as data typically come in large numbers that monthly
rates or cases are not equivalent. One can also object � as Rogerson (1996),
Wallenstein et al. (1989) and Marrero (1983) did � to �the assumption that
the year is split into two equally wide intervals of 6 months each� (Rogerson,
1996, p. 644). While Wallenstein et al. and Marrero take a �one-pulse model�
into consideration to overcome this drawback, Rogerson developed a gener-
alization of Hewitt's Test for peak periods of 3, 4, and 5 months (Rogerson,
1996). Similar to take the maximum rank sum of all possible combinations of
six consecutive months, Rogerson uses the maximum rank sum of any consec-
utive three, four, or �ve months period, respectively. Because of its relative
simplicity to calculate, Hewitt's Test has enjoyed widespread use (Rogerson,
1996). For example in the case of seasonal mortality, Akslen and Hartveit
(1988) used Hewitt's test to analyze seasonal variation in melanoma deaths.

We consider the work of Hewitt et al. (1971) and Rogerson (1996) only as
a �rst step. Sometimes, data are not provided in the appropriate form, i.e. 12
months. For example, in the United Kingdom weekly bills of mortality are
published for several centuries (see for a copy of the earliest known Weekly
Bill of Mortality: Ogle, 1892). One approach would be to convert the data
into an appropriate form for the test. We suggest, however, another approach:
we generalize the test to allow for any form of the data. It means that it
does not matter whether the data are given in a monthly, bi-weekly, weekly
or even daily manner. In addition, we are not restricted to a speci�ed peak
period as it was the case in the tests by Hewitt et al. (1971) and Rogerson
(1996) with peak periods of 3, 4, 5, or 6 months.

3 The Distribution of the Test Statistic T

The test statistic T , which is the maximum rank sum (of six consecutive
months for the situation described by Hewitt et al. (1971)), does not follow
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any �standard� distribution such as the χ2 or the t distribution. It can be
obtained by either one of two approaches: A combinatorial method has been
outlined by Walter (1980). But as pointed out by the original authors (Wal-
ter, 1980) as well as by Rogerson (1996), it is relatively tedious since one of
the requirements of this method is to know how many di�erent permutations
are possible to obtain a �xed ranksum. It is relatively easy for the highest
ranksum; with decreasing ranksum, however, it becomes increasingly di�cult
to calculate all possibilities for a �xed ranksum as shown by Walter (1980).
Therefore we opted for the other approach: Using Monte-Carlo simulation
to generate the distribution of T . This has been done by the original authors
(Hewitt et al., 1971) as well as by Rogerson (1996) for their restrictive frame-
works. The algorithm for our generalized these Monte-Carlo simulations is
described in the next section. The software to derive the distribution of T em-
pirically has tentatively been called NPST which stands for Non-Parametric
Seasonality Test.

4 The algorithm
Irrespective of the speci�c implementation language, the same algorithm has
been used in each implementation. After the theoretical presentation of the
algorithm, we will give an illustrating example using the situation Hewitt
et al. had in mind with a basic period of twelve months and a peak period
of six months. Please note that the Hewitt-approach represents a special
case for our algorithm which allows total �exibility for the length of the base
period and the length of the peak period.

4.1 Theoretical Description
The single steps in the algorithm are:

1. The user has to input four parameters:

(a) How long is the duration of the underlying data? This parameter
is denoted as long.

(b) The second parameter speci�es the length of the peak period of
interest (peak).

(c) The third parameter �xes the number of Monte Carlo samples
which should be generated (repts).
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(d) The last parameter (outputrows) is not required by the algorithm
itself. It sets the number of rows which should be output in the
end.

2. We generate a vector with integers (basedata) numbered from 1 to
long.

3. The maximum rank sum maxranksum is calculated by summing up the
last peak elements of basedata.

4. A vector is generated of length maxranksum called resultvector. Ini-
tially, each element has the value 0.

5. We make a loop with repts repetitions which iterates through the
following steps:

(a) We generate a random permutation of basedata called randperm.
(b) An array is generated with twice the length of basedata in which

randperm is duplicated. Let's call this new array doublerandperm.
(c) Now we calculate all rank sums of peak consecutive months. Using

the duplicated array from the previous sub-step facilitates the
work. If we had not duplicated randperm we would need to
switch back to the �rst element when it is required to calculate
the rank sum from December until March, for example. With
doublerandperm we can just continue counting from element 12
until 15.

(d) The maximum of the consecutive rank-sums is chosen (maxvalue).
The maxvalueth position of resultvector is increased by a value
of 1.

6. After the loop is �nished, resultvector is reversed and the relative cu-
mulative frequencies of each position are calculated (reversed-ecdf).

7. The computer is now printing the �rst outputrows elements of reversed-ecdf
in conjunction with the corresponding rank sums.
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4.2 Example
We will now present how the algorithm would work within the framework
provided by Hewitt et al. (1971) with a peak period of six months within one
year of twelve months.

1. The four parameters:

(a) long ← 12
(b) peak ← 6
(c) repts ← 1000
(d) outputrows ← 5

2. basedata

1 2 3 4 5 6 7 8 9 10 11 12

3. The maximum rank sum maxranksum is calculated by summing up the
last peak elements of basedata.

long∑

i=long-peak+1

i =

12∑

i=12-6+1=7

i = 7 + 8 + 9 + 10 + 11 + 12 = 57

4. resultvector (by row)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

5. The loop

(a) randperm.
9 7 10 5 1 8 2 6 3 11 12 4

(b) doublerandperm

9 7 10 5 1 8 2 6 3 11 12 4 9 7 . . . 11 12 4
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(c) Consecutive rank sums
• 9 + 7 + 10 + 5 + 1 + 8 = 40

• 7 + 10 + 5 + 1 + 8 + 2 = 33

• 10 + 5 + 1 + 8 + 2 + 6 = 32

• . . .

• 4 + 9 + 7 + 10 + 5 + 1 = 36

(d) maxvalue= 53 (11 + 12 + 4 + 9 + 7 + 10, October�March);
• resultvector after one iteration step:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

• resultvector after repts = 1000 iteration steps (by rows):
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 2 11 22 61 94

111 117 108 99 86 77 54 70 41 22 12 12
6. reversed-ecdf:

0.012 0.024 0.046 0.087 0.157 0.211 0.288 0.374 0.473 0.581
0.698 0.809 0.903 0.964 0.986 0.997 0.999 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1

7. Output of outputrows = 5 values:
Ranksum: 57 56 55 54 53
Simulated Cumulative Probability: 0.012 0.024 0.046 0.087 0.157

These empirical results are close to the exact values shown in Table 1
given by Walter (1980):

Based on this test, a ranksum of 57 is, therefore, required to reject the
Null-Hypothesis of no seasonality on (approximately) the 1%-level and of 55
on (approximately) the 5%-level.
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Table 1: Exact Distribution:

Ranksum: 57 56 55 54 53
Exact Values: 0.0130 0.0253 0.0483 0.0805 0.1209
Source: Walter, 1980, p. 148

5 Implementations
This algorithm has been implemented in various programming languages.
The correctness of the implementations has been checked by comparing the
results with the tabulated values given in Hewitt et al. (1971), Walter (1980),
and Rogerson (1996). Table 2 on page 9 gives an overview in which languages
this algorithm has been successfully implemented. It also shows how quickly
the execution of the code �nished using a benchmark case with a base-length
of twelve months, a peak-period of six month and 100,000 repetitions. The
results here are the outcome of tests on a computer having a 3GHz Intel
Pentium 4 Processor with 512MB RAM running Microsoft Windows XP
Professional SP2.1

As one can see, the speed of executing the benchmark case varies consid-
erably among the languages.2 The most important indicator for speed is the
question whether there is a compiler available which translates the source
code into native code or not. It takes less than one second for either C or
Ocaml to perform the benchmark test. Please see the Appendix for further
explanations of the tests.

One has to ask, of course, also: how many repetitions are necessary to
have values which are approximately close to the theoretical values? Maybe
5,000 repetitions are enough as conducted in the original article? Our ex-

1If compilers/interpreters were available under a Free Software licence comparative
tests have been conducted also on a computer with an AMD64 3000+ processor with 1GB
of RAM running the 64bit-version of Suse Linux 9.3 Professional. These results di�ered
only slightly from the ones conducted on the Windows computer.

2The chosen languages are, admittedly, highly selective and re�ect my personal prefer-
ence for functional approaches to programming. Please check section A on page 15 in the
Appendix for the webpages of the various languages.
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Table 2: Comparing the Speed of Various Implementations of the �NPST�-
algorithm With a Basic Duration of 12 Month, a Peak Period of 6 months
and 100,000 repetitions

Language Version / Mode of Code Time
Implementation Execution (in sec.)

R 2.1.0 interpreted 33
S-Plus 7.0.3 interpreted 335
Python 2.3.4 interpreted 7
Lisp-Stat 3.04 interpreted 20

3.04 byte-compiled 10
Common-Lisp Corman-Lisp 2.51 native-code compiled 9

SBCL 0.9.9 native-code compiled 2
Allegro CL 7.0 Trial interpreted 1000
Allegro CL 7.0 Trial compiled‡ 5
GCL 2.6.1 interpreted 78
GCL 2.6.1 native-code compiled 7
Clisp 2.33.1† interpreted 97
Clisp 2.33.1† byte-compiled 19
LispWorks PE 4.3.7 interpreted 54
LispWorks PE 4.3.7 compiled‡ 17

Emacs-Lisp GNU Emacs 21.3.1 interpreted 81
GNU Emacs 21.3.1 byte-compiled 37
XEmacs 21.4.13 interpreted 74
XEmacs 21.4.13 byte-compiled 41

OCaml 3.08.3 interpreted 4
3.08.3 byte-compiled 4
3.08.3 native-code compiled < 1

C GCC 3.3.1 (Flag: -O3) native-code compiled < 1
† Running on Cygwin, the GNU/Linux-like environment for MS Windows
‡ Due to the remarkable speed advantage, we assume native-code compilation.

ecution time increases linearly with the number of repetitions.3 Therefore
even the slowest implementation would be �nished in less than 20 seconds

3Thus, one can denote our algorithm in computer science terms as an O(n)-algorithm
(see Knuth, 1998).
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for 5,000 repetitions based on our results from Table 2.
A test has been conducted using an implementation of NPST in Python
with 10 Mio. repetitions. Every 100 repetitions the current value of the
empirical probability of a maximum ranksum of 57 in our benchmark case
has been written to a �le. After 10,000 repetitions, every 10,000 repetitions
were written to that �le. The contents of this �le is plotted in Figure 1 on
page 11. On the horizontal axis the number of repetitions are plotted on
a log-scale. The green horizontal line indicates the true value for the prob-
ability that a maximum ranksum of 57 is obtained in the benchmark case
(P(T ≥ 57) = P(T = 57) = 0.0130 as given by Walter (1980)). The two blue
dashed lines mark a corridor of ±0.0005 around the true value. As indicated
by the black solid line, fewer than 100,000 repetitions can yield unsatisfac-
tory results. The results from Figure 1 suggest that one should use at least
one million repetitions � preferably even more.

Due to these requirements of having at least 106 repetitions, a suitable
implementation for distribution among interested researchers should contain
a freely available compiler which translates the source code into native-code
for the respective architecture. This leaves basically only Ocaml and C/GCC
among the languages in which NPST is implemented at the moment. Both
are licenced under a Free Software licence,4 available on most architectures
and operating systems and are able to develop standalone-applications easily.
The language of choice is Ocaml. Although it is slightly slower than C in the
current implementations, it has two major advantages: automatic memory
managment and the possibility of rapid prototyping via the interpreter which
shortens the typical tedious �edit-compile-test-debug cycle� of compiled lan-
guages.

The current version of the NPST-implementation in Ocaml on WinXP is
shown in Figure 2 on page 12. After specifying the four required parameters
on the command-line, the program prints the meaning of the input, the em-
pirical values from the present NPST-run as well as the duration of executing
the current NPST-run. Please note how close the empirical values after one
million repetitions are to the theoretical values as speci�ed by Walter (1980)
and shown in Table 1 on page 8.

4GCC is licenced under the GPL, Ocaml under the QPL. Please see http://www.gnu.
org/philosophy/free-sw.html for a De�nition of �Free Software�.
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Figure 1: Theoretical Value vs. Empirical Values for an �NPST-Run� with a
Basic Duration of 12 units, a Peak Period of 6 units and 10 Mio. repetitions
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6 Summary
This paper described a nonparametric test for seasonality, called NPST,
which generalizes the approaches of Hewitt et al. (1971) and Rogerson (1996).
Whereas both previous publications used ranking information during a pe-
riod of twelve months to detect seasonality with a duration of three, four
or �ve months (Rogerson, 1996) or six months (Hewitt et al., 1971), the
present does not give any restrictions � neither on the basic duration nor
on the peak period. The algorithm can handle any situation regardless of
the length of main duration (weeks, bi-weekly units, days) and the length
of peak period of interest. Using Monte Carlo resampling techniques, the
empiricial distribution of the test statistic T is estimated. This algorithm
has been implemented in various computer languages. The implementation

11



Figure 2: A Demonstration of the Ocaml-Implementation of NPST with a
Basic Duration of 12 units, a Peak Period of 6 units, 1 Mio. repetitions and
10 lines as output

in Ocaml is the preferred platform for distribution and further modi�cations
due to the speed of execution, the ease of development and the automatic
memory management. Generating one million Monte-Carlo samples for a
framework of twelve months as the basic duration and a peak period of six
months took less than four seconds on a standard PC. For any precision in
practical applications, the empirical results were equivalent to the theoretical
values if at least one million samples were generated. The software can be
obtained from the author via email (mailto:Rau@demogr.mpg.de) in source
format as well as pre-compiled binaries for Windows XP, and GNU/Linux
on i586 and AMD64.
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A Appendix
Internet Adresses of the Implementation Languages

Language URL
• R http://www.r-project.org/
• S-Plus http://www.insightful.com/
• Python http://www.python.org/
• Lisp-Stat http://www.stat.uiowa.edu/~luke/xls/xlsinfo/xlsinfo.html
• Corman-Lisp http://www.cormanlisp.com/index.html
• Steel Bank Common http://sbcl.sourceforge.net/

Lisp (SBCL)
• GNU Common

Lisp (GCL) http://www.gnu.org/software/gcl/gcl.html
• Allegro Common Lisp http://www.franz.com/
• Clisp http://clisp.cons.org/
• Xanalys Lispworks

Personal Edition http://www.lispworks.com/
• GNU Emacs http://www.gnu.org/software/emacs/emacs.html
• XEmacs http://www.xemacs.org
• Ocaml http://caml.inria.fr/ocaml/
• GCC http://gcc.gnu.org/

Implementing the Benchmark Case
Benchmarks are notoriously problematic. CPU load, memory usage, and the
number of running processes can hardly be controlled for to be exactly the
same for each test. Also in our case it is possible that some values are bi-
ased due to the changing environment. Surprisingly, however, the timings
were relatively constant even for two completely di�erent frameworks (Op-
erating System: Windows 32bit vs. GNU/Linux 64bit; Architecture: Intel
Pentium 4, 2.4GHz vs. AMD64 3000+; RAM: 512MB vs. 1GB). Neverthe-
less, one should be careful to consider one language to be faster than another
one since the speed of execution depends heavily on the programmer's pro-
�ciency in the various languages. In addition, one could gain further speed
improvements by using compiler optimization options and/or by giving op-
tional type information.
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