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1. Introduction

Social integration is arguably a very subtle concept, difficult even to define
uniquely, let alone to measure. However, aiming at promoting political strate-
gies for a thorough involvement of immigrants into the native social life, we need
to take advantage of capable indicators to describe their overall condition. The
importance of an adequate information system is largely acknowledged: recently,
much attention has been paid to the measurements of foreigners’ integration in
Europe.

In Italy, the law 40/1998 identifies social integration with “a process of non
discrimination and of differences inclusion, contamination and experimentation of
new relations and behaviours” (Zincone 2000). The major attempt to define a set
of suitable indicators for foreigners’ integration in the Italian literature is that of
Golini et al. (2004). However, this study mainly provides a theoretical framework
based on the use of aggregated data from official sources, due to the inadequateness
of the information system, and advocates ad hoc surveys. On the other hand, in
the Italian literature there are no significant works using individual data, which are
time and money consuming.

In the need of carrying out sampling surveys, the first relevant contribution
is that of Fondazione ISMU (Milan), which have promoted and realised a survey
involving about 30 000 interviews, with the aim of evaluating the characteristics
and the needs of the foreigners’ population in Italy, with particular reference to
the Southern Regions. The availability of detailed individual data calls for more
advanced statistical analysis, which can model properly all the sources of variability
and provide a more precise account of the problem at hand. The model that we
propose in this study is based on Bayesian latent class analysis technique.

The idea is to use some relevant individual characteristics to gain information
about the non measurable level of “social integration”. The underlying assumption
that we carry on throughout the paper, is that integration is determined by the
process of possessing, or aiming at possessing, some individual features that are
perceived as prerequisites for gaining stability in the native society. Some examples
are represented by working or juridical status. By no means could this definition be
considered as definitive, nor does it apply to all contexts. However, we reckon that
it is pragmatically acceptable and therefore we use it as a basis for our analysis.

According to the Bayesian approach, each quantity subject to uncertainty (either
experimental - due to a sampling procedure, or structural - due to our ignorance
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or even incapability of ever observing its actual value) is associated with a suitable
probability distribution. This uncertainty is modified by the observation of the
available evidence. Bearing these assumptions in mind, the paper is structured as
follows: in section 2 we present the data and the survey carried out by Fondazione
ISMU; in section 3 we introduce the methodology adopted; section 4 presents the
results and section 5 the discussion.

2. Data

A survey has been conducted by Fondazione ISMU in 2005, covering the na-
tional territory, with the aim of collecting data on different characteristics of the
immigrants. The whole foreigners’ population present in Italy and coming from the
Developing Countries (DCs) has been targeted as the reference population, without
any restriction on residence or juridical status.

The survey has interested a total number of 30 thousand units: 22 thousand
were divided within the 30 Provinces forming the six Southern Regions (Campa-
nia, Apulia, Basilicata, Calabria, Sicily, Sardinia), while the remaining 8 thou-
sand were distributed in 10 Northern Provinces (Turin, Milan, Bergamo, Brescia,
Mantua, Verona, Vicenza, Bologna, Florence, Rome). Although according to the
inter-Province variability of foreigners’ distribution, the sampling scheme ensures
a minimum and maximum presence for each territorial unit – from 400 for each of
the two provinces of Oristano (Sardinia) and Enna (Sicily), to 1 600 of Naples. For
each Province, the total number of cases has been divided within an appropriate
number of Municipalities (first order units).

The second order units have been selected from the over-18 year old popula-
tion from DCs. The sampling scheme follows the methodology of centre-sampling
(Blangiardo 2004) and the term “centre” refers to a partial list or a place where
units congregate. A collection of centres is then identified in order to ensure an
adequate coverage of the population under the assumption that every unit belongs
to, or regularly visits, at least one centre.

3. Methodology

3.1. Latent Class Analysis. Latent Class Analysis (LCA) methods were first
introduced by Lazarsfeld (1950), as a tool for clustering. Later on, Goodman
(1974) developed an algorithm for obtaining maximum likelihood estimators of the
parameters and Haberman (1979) showed the connections with log-linear models.
Finally, the 1990s witnessed many works on Bayesian classification and mixture
models (Pearl 1988, Neapolitan 1990, Whittaker 1990), concepts that are closely
related to LCA and that helped broaden its scope.

The basic idea underlying LCA is that some of the parameters of the model
we choose to describe the phenomenon under study may differ across unobserved
subgroups of individuals. The unobserved (latent) groups may be associated with a
categorical variable. In other words, suppose that we observe J “manifest” variables
Y = (Y1, . . . , YJ ), and that we can assume the existence of an unobservable variable
X, say taking over C possible values (classes), accounting for the heterogeneity
within the subjects.

The number of possible states C of the latent variable X is obviously associated
with the layers of heterogeneity that we presume to exist in the study population.
In this work we focus on situations where the experimenter can define this number
from their prior knowledge of the problem (for the case where also the number
of layer is estimated by the data, the classical methodology is that discussed in
Richardson and Green 1997).
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Simple Probability Calculus allows us to express the probability distribution of
the manifest factors in terms of the latent variable as:

p(Y = y) =
C

∑

x=1

p(X = x)p(Y = y | X = x).(1)

A useful simplifying assumption is that of local independence, i.e. that the J
manifest variables are mutually independent within each latent class. In other
words, we assume that the correlation that might be observed among the manifest
factors is entirely accounted for by their common dependence on the latent variable.
This condition can be formalized as:

p(Y = y | X = x) =
J

∏

j=1

p(Yj = y | X = x),(2)

where y is a generic value for the j − th factor.
Combining (1) and (2), we then obtain that the joint probability distribution of

the manifest factors is:

p(Y = y) =

C
∑

x=1

p(X = x)p(Y = y | X = x)

=

C
∑

x=1

p(X = x)

J
∏

j=1

p(Yj = y | X = x),(3)

or, equivalently, that the joint probability distribution of the manifest factors and

the latent variable is:

p(Y = y,X = x) = p(X = x)

J
∏

j=1

p(Yj = y | X = x)(4)

- recall from Probability Calculus that p(B) =
∑

A p(A,B), and therefore (3) can
be obtained from (4) marginalizing out X. The condition in (2) can be released,
obtaining more complicated models (see Zhang 2004), but here we consider only
the simpler case of conditional independence.

A convenient alternative way to represent the model of (4) is in terms of a
corresponding directed acyclic graph (DAG, directed for the link between each pair
of nodes, acyclic for the impossibility of turning on the same node after leaving
it following the direction of the arrows, Gilks et al. 1996). In a DAG, the circles
denote random quantities, while the arrows between the nodes represent a stochastic
dependence. Figure 1 shows the graphical representation of the model. As one can
appreciate, the assumption of local independence is encoded in the absence of direct
links connecting the manifest factors Y1, . . . , YJ . This model is often referred to as
“näıve Bayesian classifier” (Friedman et al. 1997).

X

Y1 . . . Yj . . . YJ

Figure 1. Latent Class Analysis in terms of a DAG
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The objective of the LCA model is to observe a sample of data for Y, in order
to estimate its probability distribution, as factorised in (3), i.e. to infer the two
“ingredients”:

• p(X = x), which is the prevalence of each class (subgroup) in the general
population;

• p(Yj = y | X = x), which is the conditional response probability for the
j − th factor.

Let us assume that the manifest factors are all discrete; for example the variable
Yj can take on the values [yj1, . . . , yjl, . . . , yjsj

], where sj is the number of its
possible states. If we consider a total of J manifest factors, each of which may take
on sj states (j = 1, . . . , J), the possible observable profiles, i.e. combinations of all
the values of these variables, are:

P =

















P1

...
Pk

...
PK

















=

















Y1 = y11 . . . Yj = yj1 . . . YJ = yJ1

...
...

...
Y1 = y1h . . . Yj = yjl . . . YJ = yJm

...
...

...
Y1 = y1s1

. . . Yj = yjsj
. . . YJ = yJsJ

















,(5)

where K =
∏J

j=1 sj is the number of possible configurations. What we actually

measure (the evidence), is the number of times, i.e. the frequency, that each profile
is observed in our dataset:

E =

















#P1 = n1

...
#Pk = nk

...
#PK = nK

















,

where the symbol # means “number of occurrences of” and N =
∑K

k=1 nk is the
total number of units surveyed.

3.2. Bayesian modelling. The main feature of the Bayesian philosophy is that
probability represents numerically the degree of belief (uncertainty) in the occur-
rence of an event, rather than a relative frequency derived from a hypothetical
large number of experiments repeated under the same conditions. Individuals can
express their own evaluation, often referred to as subjective probability. According
to the evidence that becomes sequentially available, the individuals tend to update
their belief. Several studies in psychology and cognitive science suggest that ratio-
nal human reasoning is in fact based on these principles (Dayan et al. 2000, Gold
and Shadlen 2001).

Under these premises, probability models are defined not only for observable
variables, as also happens in the frequentist approach, but for the parameters too.
Formally, within the Bayesian framework, the experimenter needs to assign a prior

probability distribution for the parameter of interest, which encodes their uncer-
tainty over its unknown value. Once the experiment is performed and the evidence
E is observed and summarised by means of the likelihood function, the experimenter
can update their prior opinion into the posterior distribution, by means of Bayes
Theorem. In our case the objective is to compute the posterior distributions for X
and each (Yj | X), which we indicate respectively by p(X | E) and p(Yj | X, E).
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The model is specified as follows. The observed factors in Y and the unobservable
latent variable X are jointly modelled as (Y,X) ∼ Multinomial(θ,n), where:

θ =

















θ11 . . . θ1x . . . θ1C

...
...

...
θk1 . . . θkx . . . θkC

...
...

...
θK1 . . . θKx . . . θKC

















and n =

















n1

...
nk

...
nK

















According to (4), the elements of θ can be written as:

θk x = p(X = x) [p(Y1 = y1h | X = x) × . . . × p(YJ = yJm | X = x)] ,

which represent the probability that the k − th configuration in P belongs to the
latent class x, for x = 1, . . . , C. The elements of n are the observed number of
occurrences of each profile in the dataset.

This parametric assumption for the likelihood function seems natural, as we are
modelling a vector of counts. Moreover, in line with the Bayesian paradigm, along
with the Multinomial likelihood, we also need to specify a prior distribution for the
parameter θ, or, equivalently, for its two components p(X = x) and p(Yj = y |
X = x). In this case, a reasonable choice that guarantees a great flexibility in the
data fitting, is to assign X and each (Yj | X) a dispersed Dirichlet prior probability
distribution.

This model, so called Multinomial-Dirichlet, has now become quite standard
in the statistical literature (Bernardo and Smith 1999, Congdon 2001) and has
several applications in many research fields from marketing to genetics. Using this
formulation, it is possible to determine the posterior distributions p(X | E) and
p(Yj | X, E), for example using an iterative algorithm, such as the following.

(i) Simulate a value for each θkx using the prior distributions on X and on each
(Yj | X). Assuming a disperse prior essentially means that each class of
the latent variable and each state of the manifest factors are equally likely
a priori, i.e. p(X = x) = 1

C
, for x = 1 . . . , C and p(Yj = y | X = x) = 1

sj
,

for j = 1, . . . , J ;
(ii) Simulate a value for (Y,X) from their joint Multinomial distribution, using

the value of the parameter θ obtained in (i), and the observed frequency
of each profile, nk. This step amounts to randomly allocate the number of
occurrences of a profile Pk into the C classes of X, according to the value
of θ;

(iii) Simulate a value from the posterior distributions of X and each (Yj | X),
updating the priors of (i) by means of the simulated observation of (Y,X)
obtained in (ii). Since this latter is a function of the observed frequencies
nk, a posteriori the states of the manifest factors are no longer equally
likely, as some profiles will generally be more frequent than others;

(iv) Simulate a value for each θkx using the posterior distributions for X and
each (Yj | X) obtained in (iii). This amounts to update the probability
of the k − th profile being in class x due to the random variability im-
posed by the simulated observation of (Y,X) and by the observation of the
frequencies;

(v) Repeat (ii) to (iv) until convergence is reached (suitable procedures can be
used to check convergence – see for instance Gelman and Rubin 1996); use
the simulations to produce the estimations required.

In effect, this algorithm finds an optimal way to allocate the observed frequencies
in n into a C dimensional table; the allocation is produced by a combination of a
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random process, i.e. the model assumed under (4) and the evidence provided by
the observation of the data and their intrinsic variability.

3.3. Probability propagation. Beyond the estimation of the relevant parame-
ters, Bayesian LCA offers other interesting features. In fact, once the distributions
for (X | E) and each (Yj | X, E) have been derived from the observed data, it is also
possible to proceed with the estimation of the value of the latent variable X for a
specific observed profile Pk = [Y1 = y1h, . . . , Yj = yjl, . . . , YJ = yJm]. This goal can
be reached directly by means of the application of Bayes Theorem, which obviously
is specific to the Bayesian approach.

First, we instantiate (set) the observed factors, according to a certain realised
configuration. Then, we propagate the evidence, in order to update the probability
distribution of the unobserved latent variable, applying the theorem:

p(X = x | Pk, E) =
p(Pk | X = x, E)p(X = x, E)

∑

x p(Pk | X = x, E)p(X = x, E)
.(6)

All the quantities in the right hand side of (6) are directly available from the
Bayesian model. Again, thanks to the local independence assumption, the condi-
tional response probability can be calculated as the product of the single conditional
distributions of the J variables involved:

p(Pk | X = x, E) = p(Y1 = y1h | X = x, E) × . . . × p(YJ = yJm | X = x, E).

A summary of the modelling is presented in Figure 2 using the graphical represen-
tation of DAGs.

3.4. Post stratification. This latter feature of the Bayesian method is quite inter-
esting in terms of allowing post stratification and analysis. Let us suppose that the
original dataset is D = {Y ∪ Z}, i.e. it consists of the J manifest factors used for
the Bayesian LCA: Y, and of some other Q observable attributes: Z = (Z1, . . . , ZQ)
not used in the model. After the analysis is carried out, it is possible to augment D
with the probability that an individual is associated with each of the latent classes,
as estimated from (6). An example is shown in Table 1. We use the notation [u]
(read “of the unit u”) to map the observed profile of a generic unit u to one and
only one of the possible profiles in P; P[u] = [Y1(u), . . . , Yj(u), . . . , YJ (u)] represents
the observation of the manifest variables on the u − th unit (u = 1, . . . , N) of the
sample in terms of the K profiles listed in (5) - therefore [u] takes on the values
1, . . . ,K.

Id Y1 . . . YJ Z1 . . . ZQ p(X = 1 | P[u], E) . . . p(X = C | P[u], E)

1 y12 . . . yJ2 z11 . . . zQ1 0.9715 . . . 0.0285
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
u y11 . . . yJ1 z11 . . . zQ3 0.9321 . . . 0.0004
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3218 N/A . . . yJ1 z13 . . . zQ2 0.9950 . . . 0.0050
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N y11 . . . yJ3 z11 . . . zQ3 0.0005 . . . 0.0810

Table 1. Data augmentation. The posterior probability that a
given individual is associated with each latent stratum is included
in the data set, along with the original variables D

Notice that the Bayesian approach is able to associate an integration level also
with those cases that present some missing values in Y. For instance, consider
in Table 1 the row indexed by the identifier 3128; the value of the factor Y1 is
not known to the experimenter, as the individual did not respond to the relevant
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X

Y1 . . . Yj . . . YJ

p(X = x)

p(Y1 | X) p(Yj | X) p(YJ | X)

X

Y1 . . . Yj . . . YJ

p(X = x | E)

p(Y1 | X, E) p(Yj | X, E) p(YJ | X, E)

(1) Assume local independence and the
number of layers of heterogeneity, and set
the prior distributions

(2) Update uncertainty by means of the
observation of E and obtain posterior
distributions

X

Y1 . . . Yj . . . YJ

Y1 = y1h Yj = yjl YJ = yJm

X

Y1 . . . Yj . . . YJ

p(X = x | Pk, E)

Y1 = y1h Yj = yjl YJ = yJm

(3) Set the manifest variables to the val-
ues of the observed profile Pk; uncertainty
remains only on the variable X

(4) Evidence propagation and probability
inversion by means of Bayes Theorem: in-
formation travels “against the arrows”

Figure 2. Graphical summary of the model: the evidence is en-
tered in the manifest variables Y1, . . . , YJ and by means of Bayes
Theorem it is propagated against the arrows, in order to update
the distribution of the unobservable variable X. Steps (1) and (2)
represent the estimation process, whereas steps (3) and (4) describe
the analysis

question. However, the complete conditional probability distribution of Y1 (the
variable affected by the missing data) is available from the LCA model and therefore
Bayes theorem can be applied nevertheless. Consequently, we can still estimate
p(X = x | P[3128], E), averaging over the probability distribution of the missing
variable. In this case, we could calculate:

p(P[3218] | X = x, E) = p(Y1 = N/A | X = x, E) × . . . × p(YJ = yJ1 | X = x, E)

= E [p(Y1 | X = x, E)] × . . . × p(YJ = yJ1 | X = x, E)

=
1

s1

s1
∑

h=1

p(Y1 = y1h | X = x, E) × . . . × p(YJ = yJ1 | X = x, E)

for x = 1, . . . , C and use this estimation to compute (6).
Notice that this estimation is possible only when the hypothesis of Missing At

Random (MAR, Little and Rubin 1987) is sustainable and the posterior mean
(based on all the similar observed cases) can be used as a valid substitute for the
missing value. As compared to a completely observed unit, in such a situation
the estimate of (6) will be subject to higher variability, due to lesser available
information. Of course, in case the MAR hypothesis does not hold, it is impossible
to predict the missing data without the addition of (often non testable) further
assumptions.
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4. Bayesian model for immigrants social integration: some results

We applied the methodology described above to the data of the Fondazione ISMU
survey of section 2, in order to estimate an index of social integration within the
Italian society for a generic immigrant showing a profile Pk. We assume here that
the target population is characterised by two unobservable layers of heterogeneity,
i.e. each individual is either “integrated” or not within the native population. How-
ever, this attribute can never be directly measured and therefore we estimate it on
the basis of a set of observable factors that describe some relevant aspects of social
life.

Consequently, following the notation introduced earlier we considered C = 2
classes for the latent variable (i.e. X = integrated, or X = not integrated) and
J = 4 manifest variables that we used as proxies of relevant aspects associated
with the integration level: these are Gender, Juridical Status, Working Status and
Housing and Family Arrangement. Table 2 shows the possible states of each factor.
Since these are s1 = 2, s2 = 7, s3 = 4 and s4 = 15, the total number of profiles is
K = 840.

Variables Modalities

Y1 = Gender y1 1 = Male
y1 2 = Female

Y2 = Juridical Status y2 1 = Italian Citizenship
y2 2 = Permanent Permit of Stay

y2 3 = Temporary Permit of Stay/Registered in the Birth Record
y2 4 = Temporary Permit of Stay/Not Registered in the Birth Record

y2 5 = Currently renewing the Permit of Stay
y2 6 = Expired Permit of Stay
y2 7 = Never Had a Permit of Stay

Y3 = Working Status y3 1 = Stable Worker

y3 2 = Unstable Worker
y3 3 = Inactive (Student or Housewife)
y3 4 = Unemployed

Y4 = Housing and

Family Arrangement

y4 1 = Single Property Owner

y4 2 = Owns a Property with Family of Origin
y4 3 = Owns a Property with Partner and Children (if any)
y4 4 = Owns a Property with Children only

y4 5 = Owns a Property with Friends
y4 6 = Single Tenant

y4 7 = Renting a Property with Family of Origin
y4 8 = Renting a Property with Partner and Children (if any)
y4 9 = Renting a Property with Children only

y4 10 = Sharing a Property with Friends
y4 11 = Unstable Housing Arrangement (on their own)

y4 12 = Unstable Housing Arrangement with Family of Origin
y4 13 = Unstable Housing Arrangement with Partner and Children (if
any)

y4 14 = Unstable Housing Arrangement with Children only
y4 15 = Unstable Housing Arrangement with Friend

Table 2. Possible states of the 4 observed factors

By means of (6), we calculated the index of social integration in the Italian
society as:

i(u) = p(X = integrated | P[u], E),

for the u − th immigrant in the dataset. Some comments are due at this point.
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• Strictly speaking, the model is only able to analyse the alleged heterogeneity
structure. Each individual is associated with a probability that describes
how likely it is that they belong to each latent stratum. In fact, the states
of the variable X merely represent the layers within the population and it
is only the experimenter that can label each stratum, by interpreting the
results a posteriori, for instance as “integrated” or “not integrated”.

• Although the index i is defined for each unit u, it can be associated with
other individuals (even not yet observed) sharing the same features in terms
of the manifest factors used to define the probability of integration. Us-
ing this property, other individuals that have not been surveyed can be
analysed.

• Being in fact a probability, i is naturally normalised, as it is defined in the
interval [0, 1]. It is therefore easy to interpret: the closer to 1, the higher
the level of estimated social integration.

• Besides the individual index, it is also possible to calculate the average

index of integration in the overall population:

I(D) = E{D} [i(u)]

(we introduce the notation I to highlight the fact that this is an average of
the individual values i(u), calculated over a suitable set - the entire sample
D, in this case).

• More interestingly, it is possible to compute any kind of conditional average

index, i.e. among units sharing a particular set of characteristics, possibly
in terms of (some of) the variables in Z. For instance:

I(z∗) = E{Z(u)=z∗} [i(u)]

can be calculated simply taking into account the values of i(u) for the
units possessing the required values z∗ of the variables in Z. This can be
particularly helpful in the analysis.

Back to Fondazione ISMU data, the most integrated type of immigrants are
women who possess Italian citizenship or a permanent permit of stay, are inactive
and live with their partner (and children, if any) in an owned house. On the one
hand it might seem odd that the people associated with the highest level of social
integration have inactive working status. However, it is often the case that inactive
women come to Italy to rejoin their family of origin, or their partner. For this
reason, upon arrival they typically find an already stable environment. Moreover,
their permit of stay is usually granted for rejoining purpose, in which case they are
not allowed to work. This possible explanation is supported by the finding that the
most integrated profiles within males include the same features, but with a stable
job as for the working status.

Post stratification also allows characterising the index of integration within spe-
cific groups of immigrants. In particular, we focused the attention on the length of
stay in Italy and on the geographical distribution, in terms of which Italian regions
are more likely to be associated with higher levels of integration. The average index
of social integration by year of arrival in Italy is presented in Figure 3. Clearly, the
longer the presence in Italy, the higher the value of the index of integration; this
finding seems to make sense, as some time is needed to settle down in a new en-
vironment and to gain stability. In particular, Southern Regions consistently show
a lower value of the index I, with the largest difference registered among the most
recently arrived individuals, i.e. in the period 2004-2005 (cfr. Figure 3).
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The index of integration has been calculated also by area of origin for immigrants
(in this case we consider 5 macro-areas: East Europe, Asia, North Africa, Central-
South Africa and Latin America). As is depicted in Figure 4, immigrants coming
from Asia are mainly at the top of the rank. At the bottom there are individuals
from Central-South Africa. However, if we focus on the latest arrivals in Italy,
people from East Europe, North Africa and Latin America have a lower index of
integration.

Figure 5 presents the distribution of the index of integration for specific groups
of immigrants with respect to education, religion and civil status. The level of
education shows women always in advantage. Among women, different levels of
education are not associated with substantial different levels of the index of inte-
gration, whereas this appears to happen among men. The estimated index of social
integration is 0.16 for men with no tile, while it increases up to 0.67 for men with
a degree.

The distribution of religion shows a peak of the index of integration for the Bud-
dhists, regardless on the sexes; Hindustani women are associated with the highest
integration level, while Hindustani men have the lower value of the index. Mus-
lim women have high levels of integration, whereas Muslim men and Catholics in
general are ranked in the middle.

Finally, the civil status shows how being married is highly associated with a high
index of integration for both the sexes. On the other hand, women not married or
divorced have higher integration than men in the same status.
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Figure 3. Average index of social integration by time of arrival
and Italian area where the immigrants live
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Figure 5. Radar plots depicting the average index of social inte-
gration by level of education, religion and juridical status of immi-
grants



12 M. BLANGIARDO & G. BAIO

5. Discussion

In this paper we used the Bayesian approach to LCA to estimate a social integra-
tion index for immigrants in Italy. The main advantage of this methodology is that,
under a set of assumptions (stated above), it is possible to infer about quantities
that we will never be able to observe. This characteristic makes the use of standard
statistical techniques (such as multivariate regression analysis) non applicable in
this case. We are fully committed to the Bayesian approach, as we reckon that
both theoretically and pragmatically it provides a more natural framework where
all the available information can be properly taken into account. Moreover, the
findings of the current research can be used as prior knowledge to inform similar
future studies.

A limiting prerequisite for the implementation of a latent class analysis is the
availability of a large dataset. This is due to the fact that the number of possible
profiles might be large and increasing with the complexity of the design (i.e. the
possible configurations of the manifest variables). In this case, we had available
a very large database from an observational study, which makes our results quite
robust. Moreover, the data were sufficiently representative of the whole Italian
territory. However, in case the researcher could not access such a comprehensive
dataset, it would be necessary to choose either a smaller number of variables or a
fewer possible states for each of them.

The future extensions of this work include relaxing the hypothesis of conditional
independence among the manifest factors. More complex models that include corre-
lations among the observed variables and that allow an empirical estimation of the
number of latent strata in the reference population would be highly valuable. Nev-
ertheless, this issue can be quite controversial, because the latent sub-groups that
the researcher presumes in the target population has also to be easily interpretable
to be meaningful.
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