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Abstract

In a hierarchical organization whose total membership size remains
constant the annual intake is strictly determined by the number of
deaths and a statutory retirement age. Faced with a rising life ex-
pectancy especially for older individuals the average age of a population
increases. There is a fundamental dilemma of two conflicting goals of a
constant-sized age-structured population, e. g. an Academy of Sciences:
to keep a young age-structure while to guarantee a high recruitment
rate. In this paper we first present a reconstruction of the popula-
tion of the Austrian Academy of Sciences from 1847 to 2005. Based
on alternative scenarios of the age distribution of incoming members
we project the population of the Austrian Academy forward in time
and study the sensitivity of the total number of members, their age
distribution and the number of recruits for those alternative scenar-
ios. We conclude our paper by introducing an age-structured optimal
control model to determine the optimal trade-off between the rate of
replacement and the mean age of a constant-sized population whose
dynamics is modelled by the McKendrick partial differential equation.
A variant of Pontryagin’s maximum principle is derived and used to
determine the optimal recruitment distribution in the stationary case.
It turns out that due to an U-shaped age-specific shadow price of a
member it is optimal to elect either young or old aged new members.
We discuss some interesting policy implications of the obtained optimal
recruitment policy (scientific excellence and life long achievements).
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1 Motivation

The dynamics of small populations is a neglected field in mathematical de-
mography, despite its importance in several branches of science. The devel-
opment of Learned Societies, universities, armies or other hierarchical orga-
nizations can be studied by methods of population dynamics and intertem-
poral optimization. The purpose of this paper is to show how methods of
demography can be applied to reconstruct and project Learned Societies, in
particular the Austrian Academy of Sciences. Moreover we also demonstrate
the use of age structured optimal control theory to derive optimal recruit-
ment policies. Since age is one central variable in population dynamics (as
seniority is in manpower planning) the appropriate tool of controlling such
systems is distributed parameter control (see, e.g., Feichtinger and Hartl
1986, Appendix A.5).

2 Demographic Development of the Austrian Academy
of Sciences 1847–2005

Based on biographic records that include

• the date of birth and date of death

• date of election

• information of class membership

• membership status (full vs. corresponding members)

• if applicable year of change in membership status

we reconstructed the population of the Austrian Academy of Sciences (Fig-
ure 1) between its foundation in 1847 and 2005.

The population of the Austrian Academy of Sciences is determined by
the age distribution of entries, various statutory requirements (cf. Table 1)
on e. g. size, rank transitions, etc. and exits that are due to resignation,
dismissal and death.
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Figure 1: Number of full members by class, 1847–2005.

Table 1: Changes in the byelaws concerning the number of members per class,
age limits and rules of elections and the year they became operative.

Byelaws Yeara Members
per class

Specific rules

Statuten, 1st version
(1847)

1847 24

- Addendum (1848) 1848 30
Satzung, 1st version
- Addendum (1925) 1925 33
Satzung, 3rd version
- Addendum (1949) 1950 33 Age limit of 75; at maximum

five new members elected per
year.

- Addendum (1960) 1961 33 Restriction of elections
dropped.

- Addendum (1971) 1972 33 Age limit of 70.
- Addendum (1991) 1992 45b

a Year of election, where the change became effective first.
b Informal agreement to distribute additional elections over three years.
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The rapid decrease of mortality particularly in older ages has brought
about an increasing ageing of Academies. In Figure 2 we plot the mean age
of full members for both classes.
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Note: The vertical lines indicate the years, where changes in the byelaws of the Academy concerning
the number, age limits and rules of elections became operative.

Mean age of full members

Figure 2: Mean age of full members by class, 1847–2005.

Moreover, the mean age at election increased as well over time (see Fig-
ure 3), which further contributed to the ageing of the Academy.

In addition, the members of the Austrian Academy of Sciences exhibit a
lower mortality than the average Austrian population. Figure 4 shows the
standardized mortality ratio compared to Austrian life table male mortality
over time in 10-year periods starting from 1866/75. The standardized mor-
tality ratio gives the ratio of observed to expected deaths, if the members
of the Austrian Academy of Sciences would be subject to reference death
rates (in our case the Austrian male life table death rates). As evident from
Figure 4, the SMR is always below 1, except of the first period, although
not statistically significantly different from unity for the periods 1876–1885,
1896–1905, 1926–1935, and 1956–1965 as verified by a score test (Clayton
and Hills 1993). Moreover, we find that from the late 19th century to the
mid of the 20th century, the standardized mortality ratio was around 0.75
and fell to about 0.5 in the second half of the 20th century.
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Figure 3: Mean age of full members at election by class (5-year periods),
1847–2005.
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Figure 4: Standardized mortality ratio of members compared to Austrian
life table mortality over time.

3 Projections

Over-ageing of professional organizations or bodies has been frequently seen
as a disadvantage. An Academy of Sciences as an advisory body should
stay in touch with the community of working researchers. During the last
decades several new important branches of sciences, e.g. in informatics,
biology, ecology, etc., developed which should be represented by young dy-
namic scientists. To reach a rejuvenation of the Academy, there exist three
measures:

1. raising the number of members;

2. limiting the population of members by an upper age limit (70 years in
the Austrian Academy of Sciences);

3. to recruit young members.

The first “tool” has its pendant in the dynamics of large human populations
which are governed by the alternative “to age or to grow”. However, for
various learned societies (as the Academie des Sciences in France or the
Austrian Academy of Sciences) this remedy is excluded due to a constant
membership below an limit age (150 members below 75 in France, 90 full
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members below 70 in Austria). As just mentioned the second instrument is
frequently used.

This leaves the third remedy as the essential steering possibility to be
applied at the annual elections. There is, however, a fundamental dilemma
in rejuvenating an age-structured population with constant size. Let us
clarify it be a simple example which has only benchmark character.

If the Academy recruits only 47,5 year old new members, they stay 22,5
years in the system (neglecting mortality until 70 and other possibilities for
exit) until the statutory retirement age. The Austrian Academy has 90 full
members (45 in each class) yielding 90 : 22,5 = 4 new entrants each year.
If, on the other hand, only 55 year old entrants are recruited, the same
calculation delivers 90 : 15 = 6 persons.

This means that the younger the age at election, the longer the tenure
in the Academy and the lower is the rate of intake. Note that a younger
recruitment distribution means a younger age structure of the members
measured, e.g., by the average age of the population.

It is clear that a flourishing Academy wants to recruit as many new
members as possible. As already mentioned, there are new important dis-
ciplines which should be well represented in the Academy. This amounts
to the central question posed in the subsequent simulations and mathemat-
ical formalization, to find an optimal trade-off between the two conflicting
goals, of the Academy namely a young age structure and as many entrants
as possible. This fundamental trade-off of a constant size population may
be illustrated by a hyperbola as in Figure 5.

Denoting by M the total size of the body, R the member of annual in-
takes, and T the mean length of tenure, the stationary state is characterized
by the relation

M = RT (1)

In the Austrian case we have M = 90, 0 ≤ T ≤ 30 (assuming a minimal age
at entry of 40 years and an upper age limit of 70).

Remark 1: Note that the relation (1) is fundamental in a stationary
population where the stock equals the number of births times the life ex-
pectancy. In queuing theory which is based on birth-death processes (1) is
well-know as Little’s formula (see Hillier and Lieberman (1974), p.384).

Note that the dilemma has been formulated in the important contribu-
tion of Leridon (2004) describing the demography of the French Academy
of Sciences. He puts it in that way: “To counteract the spontaneous trends
in ageing in the institution new members would have to be elected at in-
creasingly young ages year after year, which would have the drawback of
reducing the rate of population replacement”.

To study the implication of the age distribution of new entries for the
number and structure of the members of the Austrian Academy of Sciences

7



Figure 5: Trade-off between recruitment R and average tenure T

we apply demographic projection methods. We consider four alternatives
scenarios of the age distribution of new entries (see Figure 6)

Status quo: Average age distribution observed during the last 25 years.

Young: Only persons below age 55 are elected.

Old: Only persons above age 55 are elected.

Bimodal: Persons between age 40 to 49 and 60 to 69 are elected.

The resulting number of members, number of vacancies and population
that is below age 70 are plotted in Figures 7 to 9. As these figures indicate,
the dilemma between a ”young” society that only allows a small number of
vacancies each year and a small number of the total stock of members vs.
an ”old” society that allows more vacancies each year and a larger stock of
members each year becomes obvious. The bimodal distribution of the age
at entry seems to be a compromise and as we will show in the subsequent
section it also constitutes an optimal recruitment policy if the Academy’s
goal is to keep its member structure young and to allow a maximum number
of recruitments each period.
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Figure 6: Projection scenarios about the age distribution of election.
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Figure 7: Projected number of members (both classes together).
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Figure 8: Projected number of vacancies (both classes together).
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4 Optimal Age-structured recruitment when a fixed-
size organization should be young

The following variables will be involved in the model below. t ≥ 0 is time,
a ∈ [a, ā] is age,
a and ā are the minimal and the maximal age of membership, respectively1,
M(t, a) is the number of members of the academy at time t of age a,
M̄ is the total number of members, which is supposed to be constant in
time.

4.1 First formulation

Changes in the composition of the Academy occur due to mortality (at a
time and age dependent rate µ(t, a)) due to retirement at age ā, and due
to recruitment, which happens with an age-dependent intensity r(t, a). The
classical McKendrick equation holds:

Mt + Ma = −µ(t, a)M(t, a) + r(t, a),

with initial and boundary conditions

M(0, a) = M0(a) – a given initial density
M(t, a) = 0.

The objective is to maximize
∫ ∞

0
e−ρt

[
αR(t)− β

∫ ā

a
A(a,M(t, a), R(t), r(t, a)) da

]
dt,

where

R(t) =
∫ ā

a
r(t, a) da,

is the recruitment trajectory and α and β are non-negative weights for the
amount of recruitment and for the age structure2, respectively, and ρ ≥ 0 is
a discount rate. Maximization is done under the following constraints

r(t, a) ≥ 0,

1For the Austrian Academy a = 40 (leaving aside very few exception) ā = 70 is the
age limit according to the Academy rules from 1972

2Notice that the two terms in the objective function are measured in different units.
The first is measured in people/time. If the meaning of A is average age (the first case
below) the second term is measured by units of time. If a decision maker chooses values
α = ᾱ, β = β̄ this means that he/she considers as equally desirable increasing the number
of recruitments by ᾱ and decreasing the average age by β̄. Certainly one can normalize
the values of α and β so that α + β = 1.
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and since the total number of members is fixed, the policy r should ensure
∫ ā

a
M(t, a) da = M̄.

For the function A(a,M, R, r) in the objective there are different possi-
bilities

1. Average age of the members

A(a,M,D, d) =
aM

M̄
.

2. Average age at recruitmemt

A(a,M,D, d) =
ar

R
.

3. Deviation from a wished age distribution of the members ηM (a)

A(a,M,R, r) =
(

M

M̄
− ηM (a)

)2

.

4. Deviation from a wished age distribution of recruitment ηr(a)

A(a,M, R, r) =
( r

R
− ηd(a)

)2
.

The above problem is technically complicated by the presence of the
state constraint requiring that the size of the Academy is fixed. Therefore
we pass to another formulation in the next section.

4.2 Reformulation

Substitute
r(t, a) = R(t)u(t, a)

with
∫ ā
a u(t, a) da = 1 and u(a) ≥ 0. Thus R(t) is the magnitude, and u(t, ·)

is the age-density of the hiring intensity.
Integrating the state equation with respect to a leads to

˙̄M + M(t, ā)−M(t, a) = −
∫ ā

a
µ(t, a)M(t, a) da + R(t).

Since ˙̄M = 0 and M(t, a) = 0, we get

R(t) = M(t, ā) +
∫

µ(t, a)M(t, a),
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which ensures the state constraint
∫ ā
a M(t, a) da = M̄ .

Moreover, we change the age variable substituting a := a−a and denote
ω = ā − a. Overloading somewhat the notation A we obtain the following
problem:

max
∫ ∞

0
e−ρt

[
αR(t)−

∫ ω

0
βA(a,M(t, a), u(t, a)) da

]
dt (2)

subject to
Mt + Ma = −µ(t, a)M(t, a) + R(t)u(t, a), (3)

M(0, a) = M0(a), M(t, 0) = 0, (4)

R(t) = M(t, ω) +
∫ ω

0
µ(t, a)M(t, a) da, (5)

and the additional constraints

0 ≤ u(t, a) ≤ ū(a),
∫ ω

0
u(t, a) da = 1. (6)

The upper bound, ū(a), for u(t, a) is introduced in order to avoid solutions
with very high or infinite density u(a) in some ages. One can take ū = +∞
for the forth choice of the function A. The four proposed choices of A become
now

A(a,M, u) =
a

M̄
M, (7)

A(a,M, u) = au, (8)

A(a,M, u) =
(

M

M̄
− ηM (a)

)2

,

A(a,M, u) = (u− ηr(a))2 .

5 Maximum principle

We introduce the adjoint system

ξt + ξa = (r + µ(t, a))ξ − µ(t, a)η(t)− αµ(t, a) + βAM ,

η(t) =
∫ ω

0
ξ(t, a)u(t, a) da,

with side conditions

ξ(t, ω) = α + η(t), lim sup
t→+∞

sup
a∈[0,ω]

ξ(t, a) < +∞. (9)
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Theorem 1 Assume that µ is measurable and bounded, A is differentiable
in M with locally Lipschitz derivative and ρ > 03. Let (u,M, R) be an
optimal solution and let u be bounded. Then the above adjoint system has
an unique solution4 ξ(t, a) and the optimal control u(t, ·) maximizes for every
t the integral

∫ ω

0
[ξ(t, a)R(t)u(a)− βA(a,M(t, a), u)] da

on the set of functions u(·) satisfying (6).

Since the problem above involves a sort of aftereffect (due to M(t, ω)
in the right-hand side of the differential equation, the claim of the above
theorem does not follow from Feichtinger et al. (2003) or from other results
concerning McKendrick type control systems. Therefore we present a proof
in Appendix.

Remark 1 Since, as usual, ξ(t, a) has the maening of a “shadow price” of
the members of age a at time t, the quantity η(t) is the “shadow price” of
the reqruited members at time t. The adjoint equation and the boundary
conditions can then be interpreted in the terms of the “shadow price”.

For further anlytical results we refer to the paper by Feichtinger and
Veliov (2005) and only present numerical solutions in the following.

5.1 Numerical solutions for the Austrian Academy of Sci-
ences

Here we have M̄ = 90, ω = 30.
Figures 10–12 present the optimal shadow price and optimal stock of

members for three sets of parameters α and β: (0.6, 0.4), (0.5, 0.5), and
(0.1, 0.9), respectively. Here the constraint ū(a) = 0.0775 is independent of
the age. With this choice of ū recruitment occurs in about 43% of the age
horizon [0, ω], namely, θ + τ = 0.435ω.

Now we consider two examples with non-constant bound ū(a). In both
cases α = β = 0.5.

In the first example (Figures 13 and 14) ū(a) decreases linearly from the
value ū(0) = 0.12 to ū(25) = 0, then equals zero on [25, 30].

3An easier alternative to consider the case ρ = 0 on a finite horizon [0, T ], in which
case the transversality condition below should be replaced with ξ(T, a) = 0.

4The exact meaning of a solution to the primal and the adjoint system is similar to
that in Feichtinger et al. (2003).

5This value means that the recruitments in every one of the 30 age groups (each one
consisting of candidates born in the same year) does not exceed 7.7% of all reqruitments. In
particular, each year there must be recruitments in at least (in fact, exactly) 100 : 7.7 ≈ 13
age groups.
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Figure 10: The adjoint variable ξ and the optimal switching ages (left) and
the optimal M(a) (right) for a constant bound ū(a) = ū.
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Figure 11: The adjoint variable ξ and the optimal switching ages (left) and
the optimal M(a) (right) for a constant bound ū(a) = ū.

In the second example (Fig. 15 and 16) ū(a) linearly increases from
zero to the value ū(12.5) = 0.16, then linearly decreases from this value to
ū(25) = 0, and equals zero on [25, 30].
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Figure 12: The adjoint variable ξ and the optimal switching ages (left) and
the optimal M(a) (right) for a constant bound ū(a) = ū.
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Figure 13: The graphs of ū, the optimal ξ.
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Figure 14: The graphs of the optimal M and u.
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Figure 15: The graphs of ū, the optimal ξ.
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