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Abstract 
Mortality predictions derived from the model proposed by Lee and Carter are 

uncertain for three reasons. The predictions are based on 
1. observed death counts and empirical death rates. These are subject to Poisson variability. 
2. estimates of the parameters of the Lee-Carter-model 
3. extrapolated values of the model's time index. 
 
Authors who have calculated prediction intervals for future death rates and life expectancies 
have usually considered the third source of uncertainty, but many have neglected the first or 
the second source, or both. The extent to which each source contributes to overall uncertainty 
is an empirical issue. 
 
We use simulation to construct prediction intervals around future death rates and life 
expectancies computed by means of the Lee-Carter-model, considering all three sources. We 
determine the relative contribution of the second and the third source, and analyse the impact 
of the first source on prediction intervals. The method is applied to mortality data for men and 
women in Norway for the period 1900-2004.  
 
 
1. Sources of uncertainty 

The model proposed by Lee and Carter (1992) for age-specific mortality has gained 

some popularity in the past decade. The model gives an accurate description of historical 

death rates in various countries; see for example Tuljapurkar et al. (2000) who successfully 

applied the model to data for the period 1950-1994 from the seven economically most 

developed countries (G7). The model also provides a simple way of projecting age-specific 

mortality into the future. The reason is that in many applications, the only parameter to be 

extrapolated, the so-called time index, shows a near linear development as a function of time.  

 

The model, sometimes in a modified form, has been applied for predicting age-specific 

mortality and life expectancies in the USA (Lee and Carter 1992; Lee and Miller 2001), the 

G7-countries (Tuljapurkar et al. 2000), Austria (Carter and Prskawetz 2001; Prskawetz and 

Carter 2001), Australia (Booth et al. 2002; De Jong and Tickle 2006), Sweden (Lundström 

and Qvist 2004; Tuljapurkar 2005) and surely a number of other countries. Since future 

mortality is unknown, the predictions are uncertain. Therefore, an important issue relates to 

the correct characterization of prediction intervals around future death rates and life 

expectancies, in particular in connection with probabilistic forecasts. 

 



Below we will argue that mortality predictions based on the model of Lee and Carter (1992) -

LC henceforth- are uncertain for three reasons: The predictions are based on 

1. observed death counts and empirical death rates. These are subjected to Poisson variability. 

2. estimates of the parameters of the LC model 

3. extrapolated values of the model's time index. 

 

Authors who have calculated prediction intervals for future death rates and life expectancies 

have usually taken the third source into account, at least partly (e.g. Lee and Carter 1992; 

Tuljapurkar et al 2000; Tuljapurkar 2005). However, many authors have neglected the first or 

the second source, or both. Exceptions are Wilmoth (1993), Brouhns et al. (2005), and Koissi 

et al. (2006) for Poisson variability, and Lee and Carter (1992), Brouhns et al. (2005), and 

Koissi et al. (2006) for the estimation uncertainty. We do not know of analyses that take 

account of all three sources of uncertainty simultaneously. The extent to which each source 

contributes to overall uncertainty is an empirical issue.  

 

LC computed prediction intervals around future life expectancies for the US. They predicted a 

life expectancy in 2065 for the two sexes combined equal to 86.1 years, with a 95 per cent 

prediction interval between 80.9 and 90.2 years. This prediction interval accounted for the 

prediction uncertainty in the time index only. In a sensitivity analysis, they found that this 

prediction uncertainty dominated over other forms of uncertainty in the long run. However, in 

their analysis they ignored estimation uncertainty in estimates of the time index and Poisson 

variability in the empirical death rates. In addition, they extrapolated empirical death rates for 

ages beyond 84, but did not evaluate the precision of those extrapolations. Therefore, we 

suspect that their prediction intervals were too narrow.   

 

The purpose of the present paper is to compute prediction intervals around future death rates 

and life expectancies computed by means of the LC model, considering all three sources. We 

determine the relative contribution of the second and the third source, and analyse the impact 

of the first source on prediction intervals. The method is applied to annual mortality data for 

men and women by single ages in Norway for the period 1900-2004. The predictions, both 

the medians, expected values, and the prediction intervals, have been used as a source of 

information when Statistics Norway prepared its 2005-based population forecast. 

 

 

2. Approach 



LC modelled the log of the death rate for a certain age x and calendar year t (mx,t) as a 

function of age-specific parameters ax and bx, and a time-specific parameter kt (the time 

index), in the following way: 

 

(1) , ,ln( ) .x t x x t x tm a b k ε= + +  

 

The model explains age–specific mortality as a combination of a common age pattern ax, 

which is independent of time, and a time index kt, which is the same for all ages, and which 

describes the decrease of mortality over time. In practice, however, the decrease is not the 

same for all age groups, and hence a multiplicative parameter bx modifies the time index for 

ages x. When there are ω+1 age groups (x = 0, 1, 2, …, ω) and T+1 calendar years (t = 0, 1, 2, 

…, T), the (ω+1)x(T+1)-matrix of death rates mx,t is summarized by 2ω + T +3 parameters. In 

practice, there are fewer parameters than death rates. Therefore, the model does not describe 

the death rates one hundred per cent accurately, and hence it contains a residual ,x tε . We 

assume that these residuals are independent and normally distributed with constant variance.  

 

LC estimated the parameters ax as the average of the empirical log-rates: ,

1
ˆ ln( )x x t

t

a m
T

= ∑ . 

Next, they estimated bx and kt by Singular Value Decomposition (SVD) of the matrix of 

centred log-rates ln(mx,t) - ˆ
xa , with the normalizing constraints that the sums of all bx-values 

and kt -values equal one and zero, respectively. 

 

Several authors (Lee and Miller 2001; Carter and Prskawetz 2001; Prskawetz and Carter 

2001; Booth et al, 2002) have argued that the empirical residuals ,
ˆ

x tε display a systematic age 

or time pattern. Indeed, when we compared observed life expectancy for Norway with the life 

expectancy predicted by model (1), we found that the predicted increase for men was too slow 

in recent years. There were also systematic patterns in the residuals across ages. These are 

two examples where the model fit is not good enough, and one may improve the model by 

including an extra term: 

 

(2) , 1 1 2 2 ,ln( ) .x t x x t x t x tm a b k b k ε= + + +  

 

One can estimate this model by applying SVD to the matrix of centred log-rates, extracting 

just two components. The estimated components b1x k1t and b2x k2t will be independent. 



Generalizing further, the model fits perfectly with N components, where N is the rank of the 

matrix that contains the death rates broken down by age and time. This leads to  

 

(3) , 1 1 2 2ln( ) ... .x t x x t x t Nx Ntm a b k b k b k= + + + +  

  

In this perspective, the original LC model uses one component, and out-of-sample prediction 

requires extrapolating just one time index.  

 

The method that results in LC based mortality rates and life expectancies for future years 

involves a great number of steps, mixing estimation and prediction. The expressions for the 

expected values of future mortality rates and life expectancies are straightforward. However, 

analytical expressions for prediction intervals are unknown because of the complexity of the 

method, and we have not attempted to derive them. Instead, we have used bootstrapping to 

find prediction intervals, similar to Lee and Carter (1992 Appendix B), but we have attempted 

to take account of all three sources of uncertainty. First, we will give a verbal description of 

our algorithm. Section 3 contains mathematical and statistical details. 

 

The following steps are involved in the algorithm that results in prediction intervals around 

future mortality. Steps 1-3 apply to point predictions for relevant variables, while steps 4-6 

give the methods for obtaining interval predictions. The algorithm is the same for men and 

women. 

 

1. Estimate age-specific death rates for each year.  

The estimates are based on observed death counts for each calendar year, and 

observed population counts at 31st December of each year, both broken down by age.  

Two features merit special attention. First, death counts for a given year are broken down by 

age on 31st December of that year. Hence, we follow birth cohorts throughout the year and 

adopt the so-called period-cohort observational plan for death counts, death rates, and age-

specific parameters (the C-P interval of Preston et al. 2001, p. 31). Our perspective is different 

from that of a life table, in which cohorts are followed from one exact age to the next (the A-

C interval of Preston et al.). The reason for adopting the period-cohort perspective is that the 

future rates have been used in Statistics Norway’s 2005-based population forecast, which is of 

the cohort-component type. Forecast models of this type follow birth cohorts from one point 

in time to the next. Second, we assume a constant force of mortality and uniformly distributed 

immigration over each unit age-time interval (Van Imhoff 1990). Rates estimated on the basis 

of a constant force of mortality have somewhat better statistical properties than the more 



usual (“actuarial”) rates, which are estimated using an assumption of uniformly distributed 

deaths over the unit interval (Hoem and Funck-Jensen 1982). For short age intervals and time 

intervals, the numerical differences between the two types of rates are small. 

 

2. Estimate the LC model  
We have taken Poisson variability of the age-specific death rates into account by 

using Weighted Least Squares (WLS) estimation, with weights equal to the inverse of the 

estimated variances for the death rates. This method gives relatively more weight to ages and 

times with high mortality. This step results in estimates of the parameters ax, bix, and kit for 

each component i (i = 1, 2 … N) together with an estimate of the residual variance.  

 

3. Extrapolate the time indices and predict age-specific mortality 

Extrapolate the time factors k1t … kNt of the LC model by an appropriate time series 

model. Predict age-specific mortality rates and derive future life expectancies. 

 

4. Draw (“simulate”) values of the residual for each age-time interval, and estimate the LC 
model Sε times, using the method of step 2  

For each age-time interval, the LC model fitted in Step 2 gives rise to a residual. 

These residuals are assembled in a table with ω+1 rows and T+1 columns. Simulate a new 

table with residuals by drawing, for each age x and year t, a new residual from a randomly 

chosen row and a randomly chosen column from the original table. Add these simulated 

residuals to the fitted values for ln(mx,t) from step 2, to obtain simulated death rates. Combine 

these simulated death rates with observed population numbers to obtain simulated numbers of 

deaths. The result of this bootstrapping procedure is a table of dimension (ω+1) times (T+1) 

with simulated age- and time-specific deaths. Repeat this simulation step of the residual Sε 

times. Estimate the LC model Sε times.  

 

The result of estimating the LC model Sε times is a set of Sε parameter estimates for ax, b1x … 

bNx and k1t … kNt. Compute, for each parameter estimate, empirical standard errors across the 

Sε simulations. 

 

5. For each of the Sε simulations of step 4, extrapolate the time indices Sk times, and predict 
age-specific mortality Sk times 

For the first of the Sε simulations of step 4, use the time series model identified in step 

2 to extrapolate the k1t … kNt. Predict age-specific mortality rates. Simulate prediction 

intervals around mortality rates by drawing the parameters of the time series model from their 

estimated distributions Sk times. Repeat this step for all Sε simulations of step 4. The result is a 

set of Sε.Sk simulations for future mortality rates. 



 

6. Collect the results for all simulations, and compute empirical predictive distributions for 
age-specific mortality and for the life expectancy in future years. 
 

The setup with Sε simulations for the residual of the Lee Carter model and Sk 

simulations for the time series extrapolation of the time index allows us to decompose the 

prediction intervals based on Sε.Sk simulations into a contribution from the Lee Carter model 

and one from the time series extrapolation. 

 

The bootstrapping procedure in step 4 can be done in various ways. LC sampled from the age 

columns of the matrix of residuals, because their bx estimates showed modest negative 

correlations across ages. Koissi et al. (2006) and Brouhns et al. (2005) sampled cell wise for 

separate ages and years. We experimented with sampling of age columns, of time rows, and 

of cells for separate ages and years.   

 

As an alternative for the WLS-estimation in step 2, one could also estimate model parameters 

by Maximum Likelihood, based on a Poisson model for the numbers of deaths by age and 

calendar year; see for instance Koissi et al. (2006) and Brouhns et al. (2005). Given age and 

calendar year, the Poisson parameters are the death rate and the exposure time (or the product 

of these two). Both the death rate and the exposure time depend on the LC model. This results 

in an expression for the log-likelihood, the complexity of which increases with the number of 

components in the LC model. Koissi et al. (2006) and Brouhns et al. (2005) assume fixed 

exposure times (given age and calendar year), and only one component. We have used up to 

five components, and assumed exposure times that depend on the LC model. Although the 

log-likelihood still would be tractable, we prefer WLS-estimation, since it gives a direct 

means of comparing results for two situations. When death rates are interpreted as given and 

Poisson variability is ignored, one selects WLS-weights equal to one. When death rates are 

interpreted as estimates, one selects WLS-weights equal to the inverse of the variances. Note 

that the WLS-estimation in step 2 can be considered a first-degree approximation of 

Maximum Likelihood estimation, in which each death rate equals the expected number of 

deaths per person and per unit of time in a Poisson model (Van Imhoff 1991). 

 

 

3. Illustration Norway 1900-2050 

We have analysed mortality for Norwegian men and women separately. We have 

used population numbers by age and sex, and annual death counts in one-year age intervals 

since 1900. Longer time series for Norwegian mortality do exist, but the quality of the data 



before 1900 is much less than that in the 20th century. Moreover, it is questionable whether 

the same model can be used to describe mortality patterns over such a long period. Lee (2000) 

questions this for the case of the USA on substantive grounds. Empirically we found for the 

case of Norway that our preferred model (see below) fits the data less well during the first 

half of the 20th century than during the second half. 

     

3.1 Estimation of the death rate and exposure time assuming a piece wise constant intensity 
for mortality and a uniform distribution for immigration 
 
Notation: 
L(x,t) number of persons at 31 December of year t, who are aged x, x ≥ 0. Age x is 

measured in completed years. In other words, L(0,t) represents the number of 
persons who were born during year t. 

D(x,t) number of persons who die during year t. Age x (in completed years) is the age at 31 
December of year t. 

m(x,t) death rate for persons who die during year t and who would have been x years old at 
31 December of year t. 

I(x,t) net immigration during year t of persons aged x at 31 December of year t. 
E(x,t) exposure time during year t of persons aged x at 31 December of year t.  
B(t) number of live births during year t. 
 
The bookkeeping equations are  

 

(4) L(x,t) = L(x-1,t-1) - D(x,t) + I(x,t), x > 0, and 

 

(5) L(0,t) = B(t) - D(0,t) + I(0,t). 

  

The purpose is to compute the death rate m(x,t) and the exposure time E(x,t) for all x and t. 

The death rate is the dependent variable of the LC model. The exposure time is required in the 

Poisson bootstrap of Section 3.2. We distinguish two cases: x > 0 and x = 0. 

 

A. x > 0 

We assume that the force of mortality is constant during year t. In addition, we assume that 

net immigration is uniformly distributed over year t. In that case we can write (Van Imhoff 

1990) 

 

(6) L(x,t) = L(x-1,t-1).exp(-m(x,t)) + {1 - exp(-m(x,t))}.I(x,t)/m(x,t) 

 

This is a non linear equation in m(x,t). We had data for L(x,t) and D(x,t) for all x > 0 and all t 

from 1900 to 2004. First, we computed net immigration from expression (4). Next, we used 

Newton Raphson iteration to compute m(x,t) from expression (6). The starting value for the 

iterations was the actuarial death rate 2D(x,t)/[L(x-1,t-1) + L(x,t)].  



 

Given the rate m(x,t) and deaths D(x,t), exposure time E(x,t) follows from E(x,t) = 

D(x,t)/m(x,t).  

 

B. x = 0 

Using the same assumptions as under A, we have (Van Imhoff 1990) 

 

(7) L(0,t) = exp(1 - m(0,t)).{B(t) + I(0,t)}/m(0,t). 

 

To compute m(0,t), we have used a similar procedure. First, expression (2) gave the sum 

B(t)+I(0,t). Next, Newton Raphson iteration of expression (7) resulted in m(0,t). Finally, we 

found E(0,t) as D(0,t)/m(0,t).  

 

A death rate computed this way can be interpreted as the Maximum Likelihood estimate of 

the underlying piecewise constant force of mortality. The asymptotic variance is estimated as 

m
2(x,t)/D(x,t) (Hoem and Funck Jensen 1982). By the Delta method we find that the variance 

of ln(m(x,t)) is approximately equal to 1/D(x,t). Figure 1 gives the age-specific death rates for 

men and women at ten-year intervals.  

 

[Figure 1. Death rates by age and sex, 1900, 1910, 1920, …, 2000] 

 

 

3.2 Estimation of the LC model with WLS 

We modelled the death rates m(x,t) computed in Section 3.1 as a Lee-Carter model 

with N components 

 

(3) , 1 1 2 2 ,ln( ) ... .x t x x t x t Nx Nt x tm a b k b k b k ε= + + + + +  

 

Estimation of the parameters of model (3) by means of Least Squares or Singular Value 

Decomposition assumes homoscedastic residuals εx,t. But the variance of ln(mx,t) is not 

constant across age or time. Therefore we applied Weighted Least Squares estimation with 

weights D(x,t) (Wilmoth 1993). Thus our estimation procedure gives much weight to ages and 

periods in which there are many deaths. This is statistically justified by the fact that such 

weights are approximately equal to estimates of 1/Var[ln(mx,t)]. An additional practical 

advantage is that this procedure automatically omits age/time combinations for which there 

are no deaths.  



 

For N components, the first-order conditions for the minimization problem result in a non-

linear system of 2N+1 equations in the 2N+1 parameters 1 1 2 2, , , , ,..., ,x x t x t Nx Nta b k b k b k . We 

used the SVD estimates for the parameters as starting values in the iterative algorithm to find 

the WLS estimates. In each iteration, we checked the normalization constraints ∑ ax = 0 and 

∑ bi,x = 1 (i=1,2,…,N) and adjusted parameter values proportionally.  

 

In our application to Norwegian mortality data, two components were sufficient to obtain 

homoscedastic residuals, both for men and women. The model with two components explains 

95 per cent of the variance in the empirical death rates for men, and 97 per cent of the 

variance for women. By way of comparison, both SVD estimation and Ordinary Least 

Squares estimation required N = 5 components to obtain homoscedastic residuals.  

 

Figures 2-6 give parameter estimates for men and women. The first time index in Figure 3 

shows that the mortality decline for Norwegian women since 1900 was stronger than that for 

men. Infectious diseases, which hit children and young adults in the beginning of the period, 

became less important. The age pattern in Figure 4 illustrates this also. Between the mid-

1950s and mid- 1980s, the mortality decline for men stagnated almost entirely. However, the 

decline continued in recent years, and it was stronger than that of women. Figures 5 and 6 

illustrate that the general development has to be modified. Since the mid-1960s, mortality for 

men between 12 and 47 years of age, and for women under 65 declined more slowly than the 

patterns in Figures 3 and 4 suggest, because the products b2(x).k2(t) are positive for these 

groups in this period. Coronary heart diseases were an important death cause in this period. 

 

[Figure 2 Estimates of a(x)] 

[Figure 3 Estimates of k1(t)] 

[Figure 4 Estimates of b1(x)] 

[Figure 5 Estimates of k2(t)] 

[Figure 6 Estimates of b2(x)] 

 

 

3.3 Time series modelling of the time factors 1tk  and 2tk  and point predictions for mortality 

First, we used time series models to compute point predictions for the time factors 

1tk and 2tk obtained by the method of Section 3.2. These point predictions are described in 

this section. This section gives the point predictions for the death rates and the life 

expectancies. In Sections 3.4-3.6 we shall turn to prediction intervals. 



 

For men, we obtained a good fit for the time factors using the following AR(1)/Random Walk 

model with exponential/linear time trend (standard errors in parentheses): 

 

(8) k1(t) = 0.98k1(t-1) – 0.00093(t-1899)1.8 + δ1(t) 
       (0.00021)  
 
 k2(t) = k2(t-1) – 0.00078(t-1899) + δ2(t) 
             (0.00041) 
 

Model (8) explains 99 per cent of the variance in k1(t) over the years 1900-2004, and 87 per 

cent of the variance in k2(t) over the same period. The coefficient 0.98 and the power 1.8 in 

the expression for k1(t) are not estimated, but chosen after some experimentation. A model 

with coefficient equal to 1 and power equal to 2 showed the same good fit to the time-series 

of k1(t) as model (8), but it predicted an unrealistic age pattern with increasing death rates for 

men around 25 years of age after 2020. The reason is the increase in (positive) values for k2(t) 

(Figure 5) combined with positive b2(x)-values for men aged 15-45 (Figure 6), which increase 

death risks for this age group. This effect disappears with a coefficient slightly lower than 1. 

The power of 1.8 was necessary to avoid a situation in which death rates for men are lower 

than those for women after 2020. δ1(t) and δ2(t) are normally distributed independent 

residuals. 

 

For women, we found the following model 

 

(9)  k1(t) = 0.99k1(t-1) – 0.0040(t-1899)1.5 + δ1(t) 
       (0.00075) 

  

k2(t) = 0.95k2(t-1) + 0.00336(t-1899) + δ2(t) 
       (0.00532) 

 

Model (9) explains 99.5 per cent of the variance in k1(t) for women between 1900 and 2004, 

and 92.6 per cent of the variance in k2(t). The estimate 0.00336 is not significantly different 

from zero at the 10 per cent level, and hence we could have omitted the linear time trend from 

the equation for k2(t). This would have resulted in a fall in k2(t) by five per cent per year. But 

Figure 5 shows an increase since the mid-1960s. There is no reason why this trend suddenly 

should be reversed. 

 

We have used models (8) and (9) to predict the time factors to 2050. Together with the age 

profiles a(x), b1(x), and b2(x) they result in predicted death rates for men and women. For 



future years, we used weighted averages of the age profiles b1(x), and b2(x) for men and 

women in order to avoid divergence between male and female mortality. When we used the 

estimated age profiles for each sex separately, we noted a much stronger fall in women’s 

mortality than that of men in the future. This is not realistic, given the ongoing convergence 

between life expectancies of men and women in Norway. To solve this problem, we assumed 

that the future b1(x) for men would consist of 20 per cent of the historical b1(x) profile for men 

and 80 per cent of the historical profile for women (Figure 4). The future b1(x) profile for 

women consists of 90 per cent of their historical profile, and 10 per cent of that of men. For 

the future b2(x) profile of men, we used again weights of 20 per cent and 80 per cent. For 

women, we used 95 per cent and 5 per cent. These weights were obtained after some 

experimentation, in which the aim was to avoid divergence between male and female 

mortality.1 Finally, we smoothed the age profiles thus obtained before applying them in the 

extrapolations, in order to avoid irregularities in predicted death rates.2 Figure 7 summarizes 

the predicted death rates in the form of life expectancies at birth for the years to 2050. The 

underlying death rates for some selected years are illustrated in Figure 8.  

 

[Figure 7. Life expectancy at birth, 1900-2050] 

[Figure 8. Death rates for men and women, 2000, 2010, …, 2050] 

 

Figure 7 shows a slight reduction of the gap between male and female mortality. In 2004, the 

life expectancy difference was 4.9 years; in 2050 the model predicts a difference of 3.9 years. 

Death rates fall for both sexes (Figure 8), due to the reduction in the time factors. 

  

3.4 Poisson Bootstrapping 

The LC model gives rise to a residual εx,t for each combination of age and calendar 

year. Denote by εs
x,t the sth bootstrap sample from the table [εx,t], x = 0,1, … 100, t = 1900, 

1901, …, 2004. We applied non-parametric bootstrapping, in which we obtained replications 

by sampling εs
x,t–values with replacement from the initial data εx,t (Efron and Tibshirani 

1998). This way we simulated Sε tables with residuals. Next we computed simulated deaths as 

D
s(x,t) = m(x,t)exp(εs

x,t)E(x,t), where both the death rate m(x,t) and the exposure time E(x,t) 

are determined by the parameter estimates 1 1 2 2, , , ,x x t x ta b k b k .3 This resulted in Sε tables with 

                                                 
1 Nan and Lee (2005) also report divergence problems when LC parameters are extrapolated separately 
for sub populations. They propose using a common time factor, or a common age profile, or both (in 
addition to factors and profiles that are specific for each sub population).  
2 De Jong and Tickle (2006) include a smoother directly in the estimation procedure of their LC model. 
We have not used this approach, because a model with smoothed age profiles deteriorates the fit in 
terms of the life expectancy for the early decades of the 20th century in our data set.  
3 Since the number of deaths is unknown here, we computed exposure time as 



simulated deaths Ds(x,t), s = 1, 2, …, S. For each of the Sε tables, we estimated LC parameters 

using the methods of Section 3.1 (replacing D(x,t) by Ds(x,t), but keeping the observed values 

of L(x,t)) and Section 3.2 (with N equal to 2). This resulted in Sε sets of parameter 

estimates 1 1 2 2, , , ,s s s s s

x x t x ta b k b k . We used those parameter estimates to compute Sε life tables for 

men and women for each of the years 1900-2004. Figure 9 plots in-sample predictions for the 

life expectancy at birth for men and women based on the empirical death rates, in the form of 

80 per cent prediction intervals based on Sε = 1000 simulations.4 The intervals are the result of 

residual variance and uncertain parameter estimates in the LC model. Since the predictions 

apply to the period 1900-2004, extrapolation of the time factors was not necessary, and hence 

the time series models (8) and (9) do not contribute to the intervals for the in-sample 

predictions. For most of the period, the intervals are about one year wide. This agrees with the 

findings by Koissi et al. (2006) who investigated uncertainty in life expectancy resulting from 

estimation uncertainty of the LC parameters. The wide intervals during the first half of the 

20th century indicate that the model fit was bad during that period. There are two 

explanations, both caused by the Weighted Least Squares algorithm. First, the algorithm gives 

more weight to the second half of the century (when annual numbers of deaths increased from 

30000 to 45000) than to the first half (when the numbers fluctuated between 30000 and 

35000). Second, numbers of deaths became more concentrated at higher ages during the 

century, because child mortality decreased considerably. Thus, the algorithm gives less 

weight to children and young adults. At the same time the life expectancy at birth is strongly 

determined by mortality at young ages. 

 

[Figure 9. Life expectancy at birth, men and women, 80 % prediction intervals] 

 

 

3.5 Prediction intervals for age-specific mortality 

For each of the Sε sets of time factors obtained by the method of the previous section, 

we used the time series models given in expressions (8) and (9) to compute prediction 

intervals around future values of 1 2 and s s

t tk k . We used simulation to obtain prediction 

intervals for 1 2 and s s

t tk k . Residuals ( )i tδ and coefficients for the time trends were drawn from 

their respective estimated normal distributions. For each of the Sε sets of time factors 

                                                                                                                                            
 E(x,t) = {L(x-1,t-1) – I(x,t)/m(x,t)(1 – exp(-m(x,t))}/m(x,t) + I(x,t)/m(x,t). 
4 The constant intensity assumption and the period-cohort observation intervals for the death rates 
result in the following expressions for the life table variables. Let m(x), q(x), and E(x), represent the 
death rate, the death probability, and the exposure time between ages x and x+1 in the life table. Let l(x) 
and e(x) represent the number of persons alive and the remaining life expectancy at age x, with l(0)=1. 
Then q(x)=1–exp(-m(x)) for x>0, q(0)=1-exp(-m(0)/2), l(x)=l(x-1)(1-q(x)), E(x)=l(x)q(x)/m(x), and 
e(x)=∑E(y)/l(x), where the sum runs from y=x to y=ω. 



1 2 and s s

t tk k (t = 1900-2004), we simulated Sk future time series of 1 2 and s s

t tk k (t = 2005-2050). 

The result was Sε.Sk sets of predictions for 1 2 and s s

t tk k , which, by the LC model, resulted in 

Sε.Sk sets of death rates predictions.    

 

Figure 10 gives 80 per cent prediction intervals for male and female mortality in 2050, while 

80 per cent prediction intervals around the life expectancy at birth are illustrated in Figure 11. 

Both graphs are based on Sε = 100 and Sk =300 simulations; in all 30,000 simulations.   

 

[Figure 10. 80 per cent prediction intervals for age-specific mortality of men and women in 

2050] 

[Figure 11. 80 per cent prediction intervals for the life expectancies of men and women, 2005-

2050] 

 

The 80 per cent prediction intervals for the life expectancy in 2050 are 5.6 (men) and 5.2 

(women) years wide. The widths of the corresponding 95 per cent intervals are 9.5 and 8.4 

years, respectively (figures not shown here). Intervals presented by Tuljapurkar et al (2000) 

for the G7 countries (Canada, France, Germany, Italy, Japan, the United Kingdom, and the 

United States) are much smaller than ours are. Their 95 per cent intervals of combined-sex 

life expectancy at birth in 2050 range from a minimum of 3.3 years for Canada to a maximum 

of 8.9 years for the UK5. These intervals result from a Lee-Carter model for age-specific 

mortality for the two sexes combined, assuming a random walk with drift model for the 

(single) time index. The authors used an abridged life table with five-year age classes up to 

80-84. Ages 85 years and higher were lumped into one age class (except for Japan). The age 

and sex aggregation, which reduces random fluctuations, may have caused these relatively 

narrow intervals6. 

 

3.6 Decomposing prediction intervals 

We have decomposed the prediction intervals in Figures 10 and 11 into two parts. 

One part of each interval is due to the fit of the Lee Carter model, and the other part is due to 

the time series extrapolation of the time indices. We have assumed that these two parts are 

                                                 
5 We multiplied the 90 per cent interval bounds reported by Tuljapurkar et al. (2000) by 
1.96/1.645=1.19, assuming a normal distribution. 
6 The impact of age grouping can be illustrated as follows. For the US, Tuljapurkar et al (2000) find a  
95 per cent interval that is 5.2 years wide in 2050. Their model (a Lee-Carter model with a single time 
index modelled as a random walk with drift) applied to unabridged combined-sex life tables gives a 
corresponding interval that is 8.3 years wide (interpolated between 2035 and 2065 in Figure 2.5 of Lee 
and Tuljapurkar, 2001). 
 



additive and independent. The sum of the two parts is not exactly equal to width of the 

interval obtained in the previous section; the difference is due to an interaction term. This 

interaction term is caused by two facts. First, the additivity assumption is not correct, because 

of the non-linear nature of the prediction interval and the parts thereof. Second, the two parts 

are probably not independent. In other words, a bad fit of the Lee-Carter model will probably 

go together with an imprecise forecast of the time indices.  

 

We selected Sε = 100 and Sk = 1 to find the part of the prediction interval caused by the fit of 

the Lee-Carter model. Similarly, by choosing Sε = 1 and Sk = 300 we found the part caused by 

the time series extrapolation of the time indices. Figure 12 compares these two parts with the 

results of  the 30,000 simulations (Sε = 100 and Sk = 300) of Section 3.5. 

 

[Figure 12. Width of 80 per cent prediction interval for male life expectancy, and constituent 
components] 
 

In-sample predictions during the years 1900-2004 do not include any extrapolation of the time 

indices. Hence the only component that constitutes the prediction interval is due to the fit of 

the Lee Carter model. Beginning in 2005, the time indices contribute increasingly larger parts 

to the prediction intervals. A small interaction term is negative in the first few years, but 

beginning in 2028 it is positive. This shows that simulations with large εx,t-residuals and large 

standard errors for the estimated bi,x and ki,t-parameters are associated with rather uncertain 

long-term predictions for the ki,t-parameters.  Figure 13 shows that in the short run, the fit of 

the LC model explains a considerable share of the width of the prediction interval. But this 

share decreases rapidly, and after 15 years into the future it stabilizes at about 20 per cent.   

 

[Figure 13. Relative contribution of LC uncertainty and time series uncertainty to width of 
80% prediction interval for life expectancy of men 
Note: shares do not sum to unity because of positive (stacked column < 1) or negative 
(stacked column >1) interaction] 
 

For women, the results are qualitatively the same, but the share due to time series uncertainty 

stabilizes at a lower level, around 70 per cent. At the same time, the (positive) share due to 

interaction is roughly of the same magnitude as the share due to LC uncertainty.  

 

The conclusion is that long-run prediction intervals are too narrow, in case one only accounts 

for uncertainty caused by the extrapolation model of the time indices. When uncertainty due 

to the fit of the LC model is taken into account as well, prediction intervals become wider. In 

the Norwegian data set we find that long-run prediction intervals for the life expectancy are 



too narrow by 100*20/80 = 25 per cent for men, and 100*30/70 = 40 per cent for women, 

when LC uncertainty is ignored.  

 

Figure 14 shows similar shares as Figure 13 does, but here the variable of interest is the 

predicted death rate for men in 2050. We note that again, by and large, the time index 

contributes about 80 per cent to the prediction interval when both uncertainty sources are 

taken into account, but there are two exceptions. For men aged between 15 and 50, there is 

some positive interaction, which reduces the share of the time index. At ages 95 or higher, LC 

uncertainty becomes more important. This is due to the fact that the fit of the LC model is 

rather bad at those extreme ages. At age 95, the 80 per cent prediction intervals for the death 

rate is 0.06 wide, increasing to a width of 0.20 at age 100 (with point predictions increasing 

from 0.29 to 0.44 over this age interval). Between ages 70 and 90, where most deaths take 

place, the interval width increases from 0.008 to 0.05. 

 

[Figure 14. Relative contribution of LC uncertainty and time series uncertainty to width of 
80% prediction interval for death rates of men in 2050 
Note: shares do not sum to unity because of positive (stacked column < 1) or negative 
(stacked column >1) interaction] 
 

 

3.7 The effect of Poisson variance 

Each empirical death rate (see Figure 1) is the estimate of the parameter in a simple 

Poisson model. Hence one has to take estimation uncertainty into account. We used Weighted 

Least Squares regression of model (3), with weights equal to the inverse value of the 

estimation variances to accomplish this. This method gives little weight to years or ages in 

which the empirical death rate has a large standard error. 

 

In order to investigate the effect of Poisson variance, we re-estimated model (3) with N=2 

using Ordinary Least Squares. Thus we assumed homoscedastic residuals. We used models 

(8) and (9) for time index extrapolations. In-sample predictions based on 100*300 = 30,000 

simulations, which are influenced by the fit of the Lee Carter model and not by the 

extrapolation of the time indices, showed rather strong effects for men. Compared to the 

prediction intervals based on WLS in Figure 9, the OLS-based life expectancy intervals for 

men that ignore Poisson variance were roughly 2-4 times as large. For women, OLS-based 

life expectancy intervals had about the same width for the years 1900-1950, and they were 

roughly 30 per cent wider for later years (until 2004). Life expectancy forecasts for the years 

2005-2050 (in terms of median and mean values across simulations) were up to 2 years lower 

for women, but up to 7 years lower for men. This is explained by the emphasis that WLS 



gives to recent years with sharp increases in the life expectancy, in particular for men. Indeed, 

the OLS-estimates for the time index k1(t) for men do not fall as quickly after 1985 as the 

WLS-estimates do. The prediction intervals for men became excessively wide – for women 

they were about 30 % wider than corresponding WLS-based intervals.7 

 

Thus we conclude that in case one ignores Poisson variance and extracts just a few 

components, the estimates for the death rates become biased with too much weight on 

periods/ages with large variance in the rates. The predictions will be wrong accordingly. In 

the Norwegian data set this was particularly the case for men. We found that WLS requires 

only two components to be extracted, rather than five or more in the case of OLS. The 

assumption of homoscedastic residuals applied in OLS is violated, unless one includes many 

components.  

 

4. Summary 

We have analysed Lee-Carter based prediction intervals for age-specific mortality and for the 

life expectancy of men and women. Mortality predictions based on this method are uncertain 

for three reasons. The predictions are based on 

1. estimates of the parameters of the Lee-Carter-model; 

2. extrapolated values of the model's time index; 

3. observed death counts and empirical death rates. These are subject to Poisson variability. 

We have described a simulation method that decomposes prediction intervals into a 

contribution due to the first factor and a contribution due to the second factor. We have 

applied this method to annual mortality data for men and women by one-year age group in 

Norway during the years 1900-2004. Ignoring factor no. 2 above implied long-run prediction 

intervals for the life expectancy that were too narrow by 25 per cent for men and by 40 per 

cent for women.  

 

Ignoring Poisson variability (factor nr. 3 above) led to too low life expectancy forecasts; 

forecasts for 2050 were two years too low for women and seven years too low for men. In-

sample predictions led to excessively wide prediction intervals, in particular for men. 

  

 
 
 
                                                 
7 Time indices based on OLS are different from those in Figures 3 and 5, and hence models (8) and (9) 
are not necessarily appropriate for extrapolation purposes. For reasons of comparison, we have retained 
them. When we assumed a random walk with drift for the time index in a model with N=1 and 
estimated by OLS (as many authors have done), we found that in-sample predictions of male life 
expectancy were structurally too low in recent years.  
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Figure 1. Death rates by age and sex, 1900, 1910, 1920, …, 2000 
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Figure 2 Estimates of a(x) 
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Figure 3 Estimates of k1(t) 
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Figure 4 Estimates of b1(x) 
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Figure 5 Estimates of k2(t) 
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Figure 6 Estimates of b2(x) 
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Figure 7. Life expectancy at birth, 1900-2050 
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Figure 8. Death rates for men and women, 2000, 2010, …, 2050 
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Figure 9. Life expectancy at birth, men and women, 80 % prediction intervals 

40

45

50

55

60

65

70

75

80

85

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

women

men

 
 
Figure 10. 80 per cent prediction intervals for age-specific mortality of men and women in 
2050 
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Figure 11. 80 per cent prediction intervals for the life expectancies of men and women, 2005-
2050 
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Figure 12. Width of 80 per cent prediction interval for male life expectancy, and its 
components   
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Figure 13. Relative contribution of LC uncertainty and time series uncertainty to width of 
80% prediction interval for life expectancy of men 
Note: shares do not sum to unity because of positive (stacked column < 1) or negative 
(stacked column >1) interaction 
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Figure 14. Relative contribution of LC uncertainty and time series uncertainty to width of 
80% prediction interval for death rates of men in 2050 
Note: shares do not sum to unity because of positive (stacked column < 1) or negative 
(stacked column >1) interaction 
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