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Abstract

This paper concerns possible approaches to study the impact of an
event (treatment) on the duration of an episode. Bivariate regression
models with unobserved heterogeneity are usually applied to this prob-
lems though they rely on strong assumption which violation can heav-
ily influence the final results. An alternative procedure uses a matching
method where survival functions are computed conditional on a function
of observed variables thus eliminating the selection based on these vari-
ables. However also the matching solution relies on a strong assumption,
namely the conditional independence assumption. Therefore we can de-
pict two situations: if we are reasonably confident that the effect of the
unobserved factors is negligible, then we can use a matching estimator. If
our data is not reach enough and we suspect that the effect of the unob-
served factors is relevant, but we observe a valid instrument we can apply
the same approach to a IV estimator.

Preliminary version. Please do not quote, nor cite

1 Introduction

Let us consider a sample of n units in an observational framework. We
are interested in estimating the impact of one event on the duration of
an episode. For instance, we could be interested in estimating the im-
pact of premarital cohabitation on the duration of marriage. This issue
has usually been investigated by means of hazard regression models (Lil-
lard et al., 1995), which however usually assumes the time-invariance of
impacts. Thus speculations are made on the base on a supposed pro-
portional shift of hazard rate due to the event. In facts, it is likely that
the impact of one event is time-varying. Furthermore the proportion-
ality assumption is not the only limitation of hazard regression models:
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when the covariate of interest is endogenous with the episode duration, a
multivariate model need to be implemented in order to take into account
the possible endogeneity (see, for example, for one application, Lillard &
Panis, 1998). However, such a model poses new problems in the treat-
ment effect identification. First, since a multivariate random component
needs to be specified, it may be the case that results are sensitive of the
chosen distribution of the random component (Heckman & Singer, 1982,
1984; Lindeboom & Van Den Berg, 1994). Moreover, in order to identify
the model some exclsusion-restriction assumption are needed, assumptions
that cannot be tested. Most of all, inclusion of time-dependent covariates,
can bias estimates of treatment effect since they may cancel the indirect
effects.
An alternative approach can be implemented moving to the model sug-
gested by Rubin (1977). This model allows for identification of the survival
function (or equivalently the hazard function) of focal episode for those
who experienced the event and the survival function for those who do not
netting out all spurious effects of other confounding variables. From the
Rubin model, analysts derived methods for estimating the impact of one
treatment on an outcome, based on matching, instrumental variables, or
regression discontinuity designs.
Matching procedures, as well as instrumental variable and regression dis-
continuity design methods, can provide unbiased estimates of average im-
pacts of “treatment on treated” given certain assumptions are satisfied.
However Heckman et al. (1997) showed that with no additional assump-
tion, it is possible to identify the whole distribution of the outcome for
treated and control group.
This work aims to take advantage of this feature of matching procedure
for deriving a time-varying estimate of the impact of one event on the
duration of an episode. This method overcome some limitations of hazard
regression: firstly, time pattern of the impact of the event needs not to
be specified, secondly the method accounts for confounders only before

the occurrence of the event. Finally, no exclusion-restriction assumption
is needed. Together with these benefits, there is one drawback: match-
ing accounts for selection bias due to observed variables but not on the
selection bias due to unobserved variables. To what extent this pitfall
affects the results is strongly dependent on richness of data used. The
more variables we are able to control for the closer to zero is the bias due
to unobserved variables.
The structure of the paper is as follows: section 2 describes the matching
procedure comparing it with the hazard regression model, using the ap-
plication made by Lillard et al. (1995) who aimed to estimate the impact
of informal cohabitation on the hazard of marriage dissolution. Section 3
makes a comparison of the results of the two methods using panel data
from National Longitudinal Study of Youth 1979 (NLSY79), whereas sec-
tion 4 concludes.
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2 Identification of causal effect: two dif-

ferent strategies

The fundamental problem of causal inference (Holland, 1986) arises when-
ever we want to estimate the impact of one event on an outcome. In order
to formalize the problem let Di be the treatment variable taking the value
1 if individual i received the treatment and 0 otherwise. Be T the outcome
that can be causally affected by D. Then let us write T1 as the outcome of
treated individuals and T0 as the outcome of untreated individuals. One
parameter of interests for researcher is the “Average Treatment Effect”
(ATE) that is

E(T1) − E(T0) =

E(T1|D = 1) · P (D = 1) + E(T1|D = 0) · P (D = 0) − (1)

E(T0|D = 1) · P (D = 1) + E(T0|D = 0) · P (D = 0).

Identification of ATE is not possible as we cannot estimate E(T1|D = 0)
nor E(T0|D = 1) and the estimate based on the comparison between
E(T1|D = 1) and E(T0|D = 0) can be seriously biased as it is possible
that the population of treated differs from the comparison group not only
in terms of treatment status but even in terms of other characteristics.
Generally, scholars are more interested in identifying the so-called “aver-
age treatment effect on treated” (ATET) that is

E(T1|D = 1) − E(T0|D = 1) (2)

(2) reduces the identification problem since there is only E(T0|D = 1)
that is not identified. Moreover, the ATET is still an interesting parame-
ter giving the average change of T for treated individuals due to the event
D only. However identification of E(T0|D = 1) needs further assumption
on the selection process.
In some cases variables T1 and T0 may represent duration of an episode.
For instance, T1 could be the marriage duration in case marriage was
preceded by an informal cohabitation (D = 1) and T0 the marriage dura-
tion without premarital cohabitation (D = 0). In this case one may be
interested in identifying the effect of D not directly on T but on its sur-
vival function ST (t) or its hazard function hT (t). Many researchers (see,
for instance, Teachman & Polonko, 1990; DeMaris & MacDonald, 1992)
tried to single out the effect of cohabitation on marriage stability but
once again we face the selectivity issues. Bennett et al. (1988) argue that
couples who cohabited before marriage are selected in terms of propen-
sity to divorce. In this case the difference between the survival function
of cohabitors ST1(t|D = 1) and the survival function of non-cohabitors
ST0(t|D = 0) is biased by this form of selection.
One common solution invoked in these cases is the use of simultaneous
equations with bivariate normally distributed heterogeneity components
to control for the unobserved variables (Lillard, 1993). In this way one
should account for former unobserved propensity to divorce and identify
the true effect of cohabitation on marriage stability.
This is the route followed by Lillard et al. (1995), who find that, after
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having controlled for observed covariates and unobserved heterogeneity,
the effect of cohabitation on the risk of marriage dissolution is not signif-
icant. Next I give details of this approach outlining the assumption on
which it relies and its possible drawbacks: firstly, in simultaneous hazard
regression it is often required to make some likely exclusion-restriction hy-
pothesis for identification purposes, which are sometimes difficult to find.
Moreover the unobserved component is assumed to be drawn from a bi-
variate normal distribution, violation of such an assumption can influence
the estimate of treatment effect. Besides in the hazard regression model
it is useful to use some time varying covariates but in this way one can
net out even the indirect effect of treatment. Finally, the treatment effect
is assumed to be time-invariant.

2.1 The regression solution

The practical problem is estimating the effect of premarital cohabitation
on the risk of union dissolution. The treatment variable is premarital
cohabitation and it is modeled via a probit function

Φ ((2D − 1) (α0 + α1X
c
m + ξ)) (3)

where D is the treatment status (equal to one if the couple cohabited
before marriage and zero otherwise), Xc

m is a set of covariates, and ξ is a
individual-specific error term, representing the unobserved heterogeneity
in the propensity to cohabit prior marriage. Φ represents the normal
distribution function.
Differently, marital dissolution is modeled with a regression function on
the log-hazard, assuming that the logarithm of the hazard function of
marriage dissolution can be defined as

log h
d
m(t) = log h0m + δ1X

d
m + δ2D + ε (4)

where h0m is the baseline hazard function (estimated by means of spline
functions), Xd

m is a set of time-varying covariates (not coincident with
Xc

m), and ε is a normally distributed heterogeneity component.
Then, it assumed that (ξ, ε) are drawn from a bivariate normal distribu-
tion. Estimates of parameters α and δ are based on marginal joint prob-
abilities of premarital cohabitation and marital dissolution, maximizing
the joint marginal likelihood
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Φ ((D − 1) (α0 + α1X
c
m + ξ)) dξdε

where Sd
m(tm, Xd

m(t), ε) is the survival function of marriage m, depending
on covariates Xd

m(t) and on the unobserved heterogeneity ε, and Cm is a
dummy variable for right censorship (i.e. it is equal to one if the episode
censored and 0 oterwise). The estimate of δ2 in the (5) gives the propor-
tional effect of premarital cohabitation on the risk of marriage dissolution,
netted out of former attitude toward divorce.
The approach described above suffers, anyway, from several limitations
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that can severely bias parameter estimation, then even δ2 that is the
paremeter of interest in this study. The first drawback is the need for as-
sumptions for model identification, i.e. we need to assume that exists at
least one variable significantly correlated with cohabitation but not cor-
related with hazard of divorce. Some authors suggest that parental char-
acteristics, such as educational level can be valid instruments. In their
work Lillard et al. claim that they do not need any exclusion-restriction
assumption as the model is identified by means of multiple individual
records for those who married more than once. However, such a solution
hide the assumption that unobserved heterogeneity is not varying from
one marriage episode to the other. This is in facts a strong assumption
given that much of unobserved heterogeneity is likely to depend on part-
ner’s characteristics, which change from one marriage to the other. Thus
model identification remains a probem.
Another limitation is that the effect of focal variable δ2 (premarital cohab-
itation in this case) on the log hazard is proportional, i.e. it is considered
as time fixed. In facts the effect of cohabitation may taper off or increase
over time. This is not an unsolvable issue1 but there is no way to deter-
mine the exact time pattern of the effect.
Third, it has been shown (Heckman & Singer, 1982, 1984; Lindeboom &
Van Den Berg, 1994) that the results of duration models are quite sensitive
of the functional form of unobserved heterogenity. Usually it is assumed
that the unobserved component is normally distributed mainly for ease
of manipulation and not on the base of prior information. Anyway, it
emerges that if this assumption does not hold the parameter estimates
(and in our case even δ2) can be severely biased.
The fourth problem concerns time-varying covariates: in the work of Lil-
lard et al. the number of children is controlled for using a time-dependent
variable. It is generally acknowledged from a causal point of view it is con-
venient to account for time variability of certain covariates, such as the
number of children (see, for example, Blossfeld & Rowher, 1995). This
means that the model accounts for births occurred even after cohabitation
and after marriage. However, controlling for children born after marriage
can net out indirect effects of cohabitation. Let us suppose that premar-
ital cohabitation has a negative effect on the risk of having a child, i.e.
cohabiting couples tend to have children later with respect to those who
marry without cohabiting. Moreover, let us assume that childbearing has
a negative effect on divorce risk, i.e. having a child makes marital dis-
ruption less likely. Then, we find that cohabitation makes indirectly more
likely a marital dissolution since it delays childbearing. If we control for
children born after cohabitation we also control for this indirect effect (see
Heckman et al., 1999).

2.2 The matching solution

The matching approach to identification of treatment effect is pretty differ-
ent from the previous one. It moves from the seminal paper by Rosenbaum

1One may, for instance, create a linear spline variable defining some knots at which the
effect changes its slope. In this case δ2 changes from one knot to the other.
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& Rubin (1983). This method invokes the strong ignorability assumption:
given a vector of covariates X, if T0 ⊥ D|X then the ATET is identified,
in fact since conditional on X E(T0|D = 1, X) = E(T0|D = 0, X) we can
compute ATET by

E[T1 − T0|D = 1] = EX {[E(T1|D = 1, X) − E(T0|D = 0, X)]|D = 1}
(6)

This approach is referred to as “matching” since treated individuals are
matched to untreated individuals on the base of X. Though theoretically
appealing, the matching approach is in practice difficult to apply when
the dimension of X is high because of the difficulties in calculating the
conditional expectations in the (2). Rosenbaum & Rubin (1983) showed
that instead of matching on the base of X one can equivalently match
treated and comparison units on the base of any balancing score, and in
particular on the base of the “propensity score” that is the conditional
probability of receiving the treatment given the values of X, formally

p(X) = Pr(D = 1|X) (7)

This result reduces the dimensionality problem in computing the condi-
tional expectation and the ATET can be unbiasedly estimated with

E[T1 − T0|D = 1] = Ep(X) {[E(T1|D = 1, p(X)) − E(T0|D = 0, p(X))]|D = 1} (8)

=

Z
p(X)

{[E(T1|D = 1, p(X)) − E(T0|D = 0, p(X))]|D = 1} · dF [p(X)]

The wide debate raised around propensity score matching (PSM) has
shown that one can go further and identify not only the ATET but the
entire marginal distribution of variable T0|D = 1. Heckman et al. (1997)
and Imbens (2004) show that with no other assumption than strong ig-
norability, F (t1|D = 1) and F (t0|D = 1) (i.e. the distribution function of
T1|D = 1 and T0|D = 1) are identified but not the joint distribution of
(T1, T0|D = 1), which could be useful if one is interested to the distribu-
tion of the treatment effect on treated (T1 − T0|D = 1).
In duration models anyway, studying the impact of D on the marginal
distributions of T1|D = 1 and T0|D = 1 can be very useful, indeed. The
matching approach allows to identify, for example, the function

φ(t|D = 1) = S(t1|D = 1) − S(t0|D = 1) (9)

where S(t1|D = 1) is the survival function of treated and S(t0|D = 1) the
survival function of the same treated individuals had they not received
the treatment. To see this, note that it possible to identify the ATET on
any function of T Y = g(T ) so that the ATET on Y is

E[Y1 − Y0|D = 1] = E[g(T1) − g(T0)|D = 1]

Hence, in order to identify φ(t) for a fixed t it suffices computing the
ATET on the variable g(t) = 1{T > t}. Firpo (2002) shows that in this
way one can identify the “quantile treatment effects”.
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Therefore we can apply the propensity score matching to survival func-
tions S(t1|D = 1) and S(t0|D = 0)

φ(t|D = 1) =

Z
p(X)

{[S(t1|D = 1, p(X)) − S(t0|D = 0, p(X))]|D = 1}·dF [p(X)].

(10)
More that one matching methods is available (see, for instance, Becker &
Ichino, 2002; Smith & Todd, 2005), here we use a stratification method:
the sample is divided into q blocks then the treatment effect is estimated
in every block through

φq(t|D = 1) = S(t1|D = 1, p(X), Q = q)−S(t0|D = 0, p(X), Q = q) (11)

where S(t1|D = 1, p(X), Q = q) and S(t0|D = 0, p(X), Q = q) are
product-limit estimate of survival function at time t of treated and control
units in block q. Blocks are determined so that within every block treated
and control groups have the same distribution for X and the same average
value of propensity score. The overall treatment effect is then computed
using the formula

φ(t|D = 1) =

QX
q=1

φq(t|D = 1)

P
i∈I(q) DiPn

i=1 Di

. (12)

φq(t|D = 1) is then weighted with the corresponding fraction of treated
units in block q. The variance estimate is as well a weighted sum of vari-
ances within every block. Let V T

q (t) the variance of S(t1|D = 1, p(X), Q =
q) and V C

q (t) the variance of S(t0|D = 0, p(X), Q = q), then

V ar [φ(t|D = 1)] =

QX
q=1

"
V T

q (t)

NT
q

+
V C

q (t)

NC
q

#
·

 P
i∈I(q) DiPn

i=1 Di

!2

(13)

This estimate is unbiased provided that the study is free from hidden bias

(Rosenbaum, 1995), i. e. self selection occurs only on the base of the
observed variables X.
This approach to identification of the effect of a treatment on a episode
duration has some benefits in respect to ordinary hazard regression: first
of all, in this approach we only need to account for characteristics of
treated and controls prior the treatment and not after. Then we are not
running the risk of removing the indirect effects of treatment from our
estimate as we do in a hazard regression model with time-varying covari-
ates. Secondly, we do not impose any time pattern to the treatment effect.
In a hazard regression model it is usually assumed that treatment effect is
either time-fixed or with a specified time pattern. The matching approach
allows to identify the true time pattern of treatment effect without any
assumption on it. Of course, we have to take in mind that together with
these benefits, there is one drawback of the matching approach, which is
that the strong ignorability assumption may not hold. Anyway this as-
sumption does not seem stronger than assumptions made in the hazard
regression approach on the functional form of the unobserved component
and on the exclusion-restriction rules. From the practical point of view,
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the choice of matching variables is the most important part of this strat-
egy, since the better is specified the propensity score the lower is the
hidden bias, and the more likely is the strong ignorability assumption.

3 Comparison of methods

The next step is to compare hazard regression and matching approaches in
estimating the impact of premarital cohabitation on marriage dissolution
risk using the same source of data, which is the “National Longitudinal
Survey of Youth, 1979” (NLSY79) The NLSY79 is a nationally represen-
tative sample of 12,686 young men and women who were 14-22 years old
when they were first surveyed in 1979. These individuals were interviewed
annually through 1994 and are currently interviewed on a biennial basis.

3.1 Description of Data

The NLSY79 is a nationally representative sample of 12,686 young men
and women born between 1 January 1957 and 31 December 1964 who
resided in the United States in 1979. These individuals are now in their
late thirties and forties, and have been personally interviewed for over 2
decades. Data were collected yearly from 1979 to 1994, and biennially
from 1996 to the present (see Bureau of Labor Statistics, 2003). The
primary purpose of the NLSY79 is the collection of data on each respon-
dent’s labor force experiences, labor market attachment, and investments
in education and training. However, the actual content of the NLSY79 is
much broader due to the interests of governmental agencies besides the
Department of Labor. Examples of other topical areas include marriage
and fertility histories, family background and demographic characteristics,
high school performance, time use, and alcohol abuse. One main issue of
longitudinal prospective data as NLSY79 is attrition of the sample. The
retention rate at every remained close to 90 percent during the first 16
interview rounds and were approximately 85 percent for rounds 17 and 18.
In the round 19 (2000) survey, 8,033 civilian and military respondents out
of the 9,964 eligible were interviewed, for an overall retention rate of 80.6
percent (Bureau of Labor Statistics, 2003). Table 1 shows the descrip-
tives statistics for the sample of individuals . The sample is voluntarily
made up of only ever married individuals (females and males), as we are
interested in union dissolutions. Since information on premarital cohabi-
tation is available only for marriages occurred after 1990, those celebrated
before that date are dropped. Then every record corresponds to a mar-
riage and for every marriage we have some information on spouses and on
the marriage itself. Sampled individuals belong to cohorts from 1957 to
1964, almost 36% of them got a high school diploma, whereas about 20%
of their mothers have a high school diploma. Catholics constitute one
third of the sample and protestants are even more (44%). As for marriage
characteristics we see that the mean age at marriage is 24 and 37 out of
100 marriages were preceded by informal cohabitation and the marriage
dissolution rate is 27%.
Table 2 show the results from a probit model on the probability of en-
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Table 1: Descriptives statistics of sample
Variable Mean

cohort range 1957-1964
% female 50.3%
% ever married 100%
Age at marriage 24.05%
% cohabited before marriage 37.4%
% with multiple marriages 7.8%
% Marriages ended with a divorce 27.5%
% graduated or higher 35.5%
% premarital conceptions 9.30%
% Blacks 19.4%
% Catholics 34.3%
% Protestants 44.2%
% Atheists 8.7%
% Mother graduated or more 19.39%
% Rural 3.11 %
% Intact family 75.1 %

tering in cohabitation; the results are in line with literature. Blacks and
Hispanics are less likely to cohabit before marriage as well as catholics,
protestants and those belonging to other religions (those without any re-
ligious belief are the reference group). Having lived in an intact family
makes less likely the pre-marital cohabitation. Conversely having had an
early (before 18) sexual experience, a previous marriage or a child makes
cohabitation more probable.
As far as marriage duration is concerned, in figure 1 we can see the Kaplan-
Meier curves for marriage preceded by cohabitation and marriage that
were not. From the figure it is evident that unconditional on spurious
effects of confounding variables, the risk of dissolution is higher for mar-
riages preceded by informal cohabitation.
Figure 2 maps the log negative log of survival functions versus the log of

survival time. This is to show that the issue of proportionality cannot be
neglected, in fact the curves are not parallel as they should be, in the case
of proportional effects. However, even looking only at figure 1 it turns
out that survival functions are not parallel and that the effect of informal
cohabitation (unconditional on X) is not time-independent.

3.2 Results from hazard regression

Basically I replicate the analysis made by Lillard et al. (1995) using dif-
ferent specification of the hazard model. For instance, I show results from
model using time-varying covariates (number of children) and the same
model not using such variables. The aim is to show that inclusion of time
dependent variables can bias the estimate of the parameter of interest. In
this section only the value of parameters in the union dissolution equation
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Table 2: Probit model on cohabitation.
Coeff. St. Err. t-value

Constant -0,623 1,886 -0,331
Year of birth 0,015 0,028 0,543
Female 0,019 0,058 0,330
Reference: White

Black -0,165 0,080 -2,064
Hispanic -0,299 0,094 -3,173
Mother graduated or more 0,091 0,082 1,113
Father graduated or more 0,059 0,075 0,779
Reference: No religion

Catholic -0,380 0,111 -3,438
Protest -0,376 0,105 -3,578
Other religion -0,525 0,126 -4,153
Intact family -0,161 0,068 -2,376
Graduated or more -0,024 0,027 -0,911
Enrolled in education -0,161 0,083 -1,929
Rural area -0,056 0,069 -0,807
Poverty status (in 1979) 0,001 0,001 0,860
Health limitation 0,170 0,135 1,265
Sex int. before 18 0,199 0,095 2,089
Multiple marr. 0,449 0,094 4,795
Children before marr. 0,682 0,091 7,467
Age difference 0,003 0,007 0,496

Figure 1: Marriage duration for cohabitors and non-cohabitors
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are shown while the coefficients from the cohabitation equation are not
shown given they are quite similar to the coefficient reported in table 2.
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Figure 2: Log negative log survival function for cohabitors and non-cohabitors
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From table 3 show the first set of results:
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Table 3: Simultaneous Model on Marriage duration and cohabitation.

Model 1 Model 2 Model 3 Model 4

Constant -22,150 *** -19,538 *** -21,922 *** -19,387 ***
Marriage Duration

0-1 years 1,620 *** 1,538 *** 1,614 *** 1,524 ***
1-7 years 0,360 *** 0,267 *** 0,361 *** 0,269 ***
7-15 years 0,091 *** 0,049 *** 0,091 *** 0,050 ***
more than 15 years 0,007 -0,010 0,004 -0,013
Cohort (Base: 1957) 0,230 *** 0,189 *** 0,227 *** 0,186 ***
Marriage 2+ 0,540 *** 0,604 *** 0,513 *** 0,565 ***
Cohabited -0,297 -0,208 -0,149 -0,015
Duration of cohab. 0,099 ** 0,115 ***
Premarital child -0,310 ** 0,119 -0,291 ** 0,153
Children born in current marriage

1 child (time-varying) -0,615 *** -0,625 ***
2 children (time-varying) -1,251 *** -1,265 ***
Black 0,142 0,182 0,141 0,182
Hispanic -0,108 -0,134 -0,109 -0,133
Female -0,244 *** -0,180 ** -0,232 ** -0,167 *
Catholic -0,111 -0,159 -0,110 -0,158
Protest -0,169 -0,145 -0,173 -0,152
Other rel. -0,028 -0,041 -0,029 -0,038
Intact family -0,214 ** -0,179 * -0,222 ** -0,187 **
Graduated or more 0,013 -0,002 0,011 -0,004
Enrolled to educ. -0,358 *** -0,303 ** -0,356 *** -0,302 **
Rural area 0,003 0,025 0,004 0,027
Poverty -0,001 -0,001 -0,001 -0,001
Sex before 18 0,274 ** 0,227 * 0,285 ** 0,239 *
Health limitations 0,332 0,273 0,326 0,270
Age difference 0,002 0,000 0,003 0,001
σξ 1,185 *** 0,991 *** 1,196 *** 1,017 ***
σǫ 0,759 *** 0,762 *** 0,759 *** 0,761 ***
ρξ,ǫ 0,601 *** 0,652 *** 0,595 *** 0,615 ***
∗∗∗=p-value< 0.01, ∗∗=p-value< 0.05, ∗=p-value< 0.1.

when cohabitation and marital dissolution are considered simultaneously,
the positive effect of cohabitation becomes negative and not significant2.
In our case, differently from Lillard et al. (1995) there is an effect of du-
ration of cohabitation even in the simultaneous model. The correlation is
positive and significant meaning that those who are more prone to cohab-
itation are even more prone to marriage dissolution. The second column
of table 3 reports the results of the same model without the time-varying
covariates on the number of children born during marriage. As remarked
before, the use of these variables can bias the effect of cohabitation. If the
number of children born during marriage has a negative effect on marital
dissolution, which is the case given the results in the first column, and
cohabitation has a negative on the hazard of having children during mar-
riage then controlling for the number of children means also controlling for
an indirect effect of cohabitation. This seems to be the case, indeed the

2The results of single equation model on marital dissolution are not shown for the sake of
brevity. What we need to know is that in this model the effect of cohabitation is positive and
significant.
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effect of cohabitation on marital dissolution is -0.297 when the number of
children is controlled for and -0.208 when the number of children is not
controlled for. Similarly the effect of duration of cohabitation pass from
0.099 to 0.115. In the third and the fourth column of table 3 the same
models are replicated except for variable “duration of cohabitation” that
was dropped. Thus the change in the value of the cohabitation parameter
is more evident passing from -0.149 to -0.015. In our case this change is
not relevant as the value of δ2 is not significant this example show that
using a time-varying covariate can bias the estimate of treatment effect
and in other cases this bias can be more relevant.

3.3 Cohabitation effect: estimation with the match-

ing procedure

The first step for estimating the effect of pre-marital cohabitation on the
risk of divorce is to estimate the propensity score via a logit model. The
main issue in this case is not the correct specification of the logit model
but the inclusion of all the variables that are suspected of confounding
the effect of cohabitation on the divorce risk. For example, it is necessary
to include a dummy variable for second or higher order marriages. Those
who already experienced a divorce are more likely to start a new mar-
riage with a cohabitation and on the other hand are probably more prone
to marriage dissolution. Other variables are likely to be correlated with
the propensity of experiencing a divorce: religious affiliation, for exam-
ple, has to be controlled for, as well as ethnicity: catholics are less likely
to cohabit before marriage and less inclined to divorce (considering the
Catholic precepts about marriage) than non-catholics. After having esti-
mated the propensity score, The sample is divided into blocks based on
percentiles of propensity score. Thus the first block includes all individual
with the lowest value of propensity score up to percentile p1, the second
block all the individuals whose propensity score is between p1 and p2, and
so on3. Figure 3 shows the estimate of φ(t|D = 1) as described in section
2.2. The second graph shows the reconstruction of survival curves after
matching. The survival function of treated is estimated through ordinal
product-limit method, as S(t1|D = 1) is identified. The survival function
for control units is reconstructed as a difference between S(t1|D = 1) and
φ(t|D = 1) = S(t1|D = 1) − S(t0|D = 1).
The result confirms that the effect of cohabitation is not time-fixed: dur-
ing the first 3 years the hazard of marriage dissolution of cohabitors is at
the same level of non-cohabitors. After this period the survival curve of
cohabitors decline more rapidly then again after 4000 days of marriage
(almost 10 years) φ(t|D = 1) becomes flat again. At the end, we see that
after 6000 days of marriage the “treated” units experienced a higher rate
of marriage dissolution than the control units did.

3The number of blocks is determined by an algorithm testing within every block that
average propensity score of treated and control units does not differ. If the test fail in one
block the latter is split into two blocks and repeat the test (Becker & Ichino, 2002, see).
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Table 4: logit model for pre-marital cohabitation, NLSY79.
Estimate Std. Err. t-value

(Intercept) 0,111 0,511 0,218
Reference: 1957

Year of birth 1958 0,093 0,198 0,472
Year of birth 1959 0,184 0,195 0,941
Year of birth 1960 0,153 0,195 0,788
Year of birth 1961 0,211 0,239 0,886
Year of birth 1962 0,217 0,249 0,874
Year of birth 1963 0,418 0,254 1,645
Year of birth 1964 0,289 0,263 1,099
Female 0,053 0,119 0,448
Graduated or more 0,018 0,181 0,097
Enrolled in education -0,194 0,125 -1,546
Female ∗ Graduated -0,296 0,180 -1,643
Rural area -0,079 0,108 -0,731
Health limitations 0,320 0,202 1,582
Reference: No religion

Catholic -0,657 0,160 -4,100
Protestant -0,573 0,155 -3,699
Other religion -0,849 0,188 -4,511
Black -0,020 0,124 -0,160
Original family characteristics

Family size (before union) -0,094 0,024 -3,919
Poverty status (in 1979) -0,016 0,120 -0,133
Intact family -0,123 0,105 -1,171
Mother graduated or more 0,052 0,127 0,407
Father graduated or more 0,079 0,117 0,675
Siblings 0,017 0,020 0,822
Sentimental history

Age at union 0,003 0,016 0,164
Multiple marriage 0,642 0,166 3,877
Children before union 0,654 0,115 5,677
Sex int. before 18 0,294 0,141 2,087
Age difference 0,000 0,000 -1,172
Female ∗ Age difference 0,000 0,000 2,272

4 Conclusion

The paper shows two different approaches used in determining the the ef-
fect of pre-marital cohabitation on marriage duration. The first approach
uses a bivariate model of both processes taking into account the effect of
unobserved heterogeneity by means of a bivariate random component with
normal distribution. The second approach assumes “strong ignorability”
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Figure 3: Treatment effect on duration of marriage and survival functions after
matching
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or “conditional independence”, i.e. the effect of unobserved heterogeneity
is assumed to be irrelevant in the determination of the cohabitation effect.
In this paper I criticize the first approach because of some pitfalls: the
functional form of the bivariate random component can heavily influence
the estimates of the cohabitation effect, and given there is no theoretical
justification for imposing one particular distribution to the unobserved
heterogeneity this makes the results unreliable. Another pitfall is pro-
vided by the time-varying covariates which use can have undesired effect
on the the treatment effect estimates, canceling out a possible indirect
effect of the treatment. Moreover the treatment effect is often assumed to
be time-invariant, alternatively a set of knots has to be specified in order
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to allow for time variability of the effect. Finally, estimates rely on a set
of exclusion-restriction hypothesis. In the example provided identification
is based on multiple individual records provided by multiple marriages of
individuals but this solution implies that the unobserved heterogeneity
does not change across marriage episodes.
The second approach is not free from drawbacks. Basically, the estimates
relies on the conditional independence assumption, an assumption that is
often overly strong (Heckman et al., 1998). However is possible to apply
the same approach to Instrumental Variable estimator (Angrist & Kruger,
2001; Imbens & Angrist, 1994). This approach does not need the condi-
tional independence assumption but it needs a valid instrument, without
any other assumption on functional form of unobservables. Thus we can
outline two possible situations: in the first one we can have rich informa-
tion on the process we are studying. In this case we may be confident
that the effect of the unobserved factors is negligible, then we can use a
matching estimator. In the second case we have not rich data or we sus-
pect that the effect of the unobserved factors is relevant, but we observe a
valid instrument. Then we can apply the approach illustrated in section
2.2 to a IV estimator.
This work is still at a preliminary stage: basically I aim to run some
sensitivity analysis both on regression and matching estimates. The haz-
ard regression will be estimated with different specification of unobserved
heterogeneity term distribution in order to see how estimate of treatment
effect is sensitive to random effect functional form. Furthermore I intend
to check how the matching estimate is robust to different specification of
the set of matching variables.
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