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Abstract 

 

The paper is devoted to the development of Bayesian methodology for international migration 

forecasting. Its aim is to present a statistical framework for (1) a formal selection of a forecasting 

model, and (2) combining knowledge from various competing models in order to obtain averaged 

forecasts. The main benefit of pooling forecasts yielded by different models is the reduction of 

forecast error resulting from the uncertainty of model specification. The Bayesian framework 

ensures the formal status of applied statistical tools in addressing the uncertainty issues, allowing 

at the same time for an explicit incorporation of subjective expert opinion in the model selection 

process, as well as in the models themselves. In the paper, a theoretical discussion is supported 

by an empirical application of the presented methodology to a forecast of migration flows 

between Germany and three European countries: Poland, Italy, and Switzerland, for the period 

2005–2010. The analysis employs macro-level data from the population registers of the countries 

under study, and is restricted to forecasting models based on simple stochastic processes.  
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1. Introduction  

 

Forecasting1 international migration is an important, yet very difficult research task, 

characterised by highest errors among the predictions of all components of demographic change 

(National Research Council, 2000: 156–157). Reasons for this state of affairs include:  

(1) impossibility of creating a comprehensive migration theory given the multi-dimensionality and 

complexity of the phenomenon, (2) difficulties in operationalising the existing theoretical 

framework of migration, (3) uncertainty of potential explanatory variables, (4) ignoring forced 

migration and policy elements in the forecasts, and (5) poor data quality (Kupiszewski, 2002).  

Nevertheless, a need for reliable forecasts of international migration is becoming 

increasingly significant despite high levels of error. Population movements are currently gaining 

in importance given the decreasing impact of natural change on population dynamics in the 

developed countries (cf. van der Gaag and van Wissen, 1999). Hence, migration forecasts 

constitute an essential part of population predictions, which are crucial for any aspect of socio-

economic planning in a longer term. Moreover, migration forecasts themselves are of interest for 

the policy makers from a purely operational point of view, with respect to the numbers of 

migrants, or the short-term impact of migration for example on labour markets. Improving 

forecasts can contribute to better policy decisions, which in turn may have significant 

consequences for the societies, not limited to their economic aspects (Ahlburg et al., 1998: 192).  

Some level of migration forecasting error is always inevitable, as any inference about the 

future is made under uncertainty, which is further discussed in Section 2.1. Nevertheless, there 

have been several propositions about the ways to improve the accuracy of forecasts. Among 

them, the study of Rees et al. (2001) suggests that methodological advancements in migration 

forecasting coincides with visible declines in the ex-post prediction errors. This constitutes a 

rationale for the current research, which aims at contributing to the development of forecasting 

methodology in order to improve the accuracy of international migration predictions. In 

particular, I follow the idea of Ahlburg (1995), and Ahlburg and Lutz (1998), who advocated the 

benefits from combining (averaging) forecasts in order to reduce their errors2. It has to be noted 

that averaging of various deterministic and model-based forecasts of net international migration 

                                                 
1 With due respect to the demographers’ dispute on using the terms forecast and projection, I apply the former one 
throughout the paper. Keilman (1990: 7) noted that a forecast is an unconditional result of the process, in which 
“based on current scientific insights, a forecaster gives his best guess of what the future […] will be”. In the 
probabilistic context, such a ‘best guess’ is produced by the assumed stochastic model. Although it is sometimes 
useful to further distinguish forecasts and predictions (Keilman, 1990: 8), I use these terms interchangeably.  
2 The idea originates from the work of Armstrong (1985). 
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has been done for the 15 countries of the ‘old’ European Union in the recent population 

predictions of the Eurostat (2005), following the methodology of Lanzieri (2004). 

The objective of the current paper is to present a Bayesian framework for formal 

selection of a forecasting model, and for producing averaged forecasts based on various models. 

The Bayesian approach ensures the formal status of applied statistical tools in addressing the 

uncertainty issue, allowing at the same time for an explicit incorporation of subjective expert 

opinion in the models. The main benefit of averaging forecasts is the reduction of forecast error 

resulting from the uncertainty of model specification. 

Apart from the Introduction, the paper comprises of four sections. Section 2 presents a 

short discussion on the uncertainty and subjectivity issues in migration forecasting. This 

background aims to justify the application of the Bayesian approach, a brief introduction into 

which is also offered. The discussion is supplemented by an overview of existing Bayesian 

forecasts of international migration. The possibilities offered by the Bayesian methodology are 

further corroborated in Section 3, containing a description of the foundations of the Bayesian 

model selection and averaging techniques.  

The theoretical discussion is supported in Section 4 by an empirical application of the 

presented methodology to a forecast of long-term migration between Germany and three 

European countries: Italy, Poland, and Switzerland, for the period 2005–2010. The analysis is 

based on aggregate data from population registers of the countries under study, and is restricted 

to forecasting models derived from simple stochastic processes. Finally, Section 5 contains the 

main conclusions of the study, as well as some suggestions for further research in this area.  

 

2. Uncertainty and subjectivity in migration forecasting and in Bayesian statistics3 

 

2.1. Uncertainty and subjectivity in migration forecasting 

 

Uncertainty about the future values of the forecasted phenomena is an immanent feature 

of every prediction. With respect to the sources of uncertainty in population (and thus also 

migration) forecasting, Keilman (1990: 19–20) distinguishes seven types of possible errors. Three 

of them are related to the measurement issues (errors in observed trends, in jump-off data, and 

rounding errors), one to the randomness of the parameters of the forecasting model, and further 

three to the errors in the forecasts of exogenous variables, possible future discontinuity in trends, 

                                                 
3 Section 2 draws on the earlier paper of the author (Bijak, 2005). 
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and to the improper model specification. Rees and Turton (1998) observed that uncertainty in 

population forecasting is usually dealt with in a number of ways: 

1. Ignored, by constructing single-variant deterministic forecasts; 

2. Included, but not quantified in terms of probability, by developing multi-variant scenarios 

(conventionally: baseline, high, and low), which is often done by the national statistical 

offices, United Nations (2005) and Eurostat (2005); 

3. Accommodated within a stochastic approach, which quantifies uncertainty in terms of 

probabilities of future events. Keilman (2001) distinguishes three types of such forecasts: 

extrapolation of time series (de Beer, 1990; Lee and Tuljapurkar, 1994; Keilman et al., 

2001), propagation of historical forecast errors (Alho, 1990; National Research Council, 

2000), and probabilistic projections based on the expert judgement (Lutz et al., 1996, 2004).  

In international migration forecasting, all three possibilities are explored. Deterministic 

forecasts are often the outcome of various surveys or Delphi analyses. The multi-variant 

scenarios are most frequently used within the framework of cohort-component or multiregional 

models of demographic dynamics. Stochastic forecasts of international migration are usually 

either the outcome of econometric models, or time series extrapolation, and there are only a few 

examples of forecasts applying the Bayesian approach.  

From the probabilistic point of view the deterministic and the scenario-based approaches 

are methodologically inconsistent. A deterministic forecast formally has a probability of 

occurrence equal zero under any continuous distribution reflecting uncertainty. The scenario 

approach is criticised for not providing the information, what are the expected ex-ante chances 

that the phenomena under study will be actually observed between the low and high variants 

(Lutz et al., 2004: 19). Moreover, the scenario selection (baseline, high or low) often implicitly 

assumes the presence of a single common underlying factor for all variables (fertility, mortality, 

migration), and all regions under study. The aggregate effects are thus based on the assumption 

of a perfect correlation between the variables and regions, which is not formally examined, and 

very often not true (National Research Council, 2000: 191–192).  

Unlike in the former two cases, in the stochastic approach uncertainty is quantified in 

terms of probability. Due to this fact, as well as to the methodological consistency of the 

approach, many authors argue that the probabilistic forecasting in demography will become 

increasingly more in use in the future (Lutz and Goldstein, 2004: 3–4).  

As it has been noted by Pittenger (1978), all population forecasts and projections rely 

heavily on the expert judgement. Uncertainty inherent in the forecasts requires making use of 

many subjective elements, including the choice of the forecasting model, its assumptions, 
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forecasts of the future changes of exogenous variables and other components of population 

dynamics, etc. This subjectivity can be either explicitly stated in the forecast, or concealed among 

the assumptions applied. In either case, it is an inherent element of the selection of a forecasting 

model, as well as of making assumptions about the future scenarios of demographic change 

(Gjaltema, 2001). The incorporation of expert judgement in population forecasting is usually not 

explicitly addressed by the forecasters, with the notable exceptions of, for example, the studies by 

Alho and Spencer (1985; 2005), Alho (1990), and Lutz et al. (1996, 2004).  

International migration is a particularly complex and multi-dimensional demographic 

phenomenon, characterised by a large dose of uncertainty, which ideally should be properly 

addressed and quantified. The existing methods of migration forecasting include various 

approaches originating from demography, economics, sociology, geography, etc. Improvement of 

the forecasting methodology may require combining expertise from various disciplines. However, 

the subjective and judgemental elements, inevitable in any forecast, should be explicitly visible in 

the formulation of the model and its assumptions. This is the basic rationale for selecting 

Bayesian statistics as a framework for forecasting international migration. 

 

2.2. Preliminaries of Bayesian statistics 

 

The Bayesian approach in statistical inference, based on the Bayes Theorem (Bayes, 1763; 

Laplace, 1812), uses the sample information to transform the prior knowledge of the researcher on 

the phenomenon under study, into the posterior knowledge4. The former reflects the subjective 

opinion (belief, intuition) on the subject, without taking observations into account, while the 

latter is conditional on the sample data. Formally, Bayesian statistics infers on the unknown 

parameters of the model describing the phenomenon (θ), conditionally on the statistical 

information (x), both treated as random quantities. This approach is therefore contrary to the 

traditional sampling-theory statistical methods, for example the Neyman-Pearson theory of 

hypothesis testing. The latter one is based on the concept of likelihood, i.e. the probability of 

obtaining a random data sample x, given fixed, yet unknown, model parameters θ.  

In terms of probabilities, the Bayes Theorem can be written as: 

(1)     
)(

)|()(
)|(

xp
xppxp θθ

θ
⋅

= . 

                                                 
4 The Bayesian statistics as a complete inference paradigm originates from the works of Jeffreys (1939), Barnard 
(1947, 1949) and Savage (1954); its complete theoretical overview is given for example in Bernardo and Smith (2000). 
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From (1) it follows that the posterior probability p(θ|x) is proportional to the product of the 

prior probability p(θ) and the likelihood of the sample p(x|θ), where the proportionality factor is 

the marginal density of the data, p(x). 

A key concept in Bayesian statistics, distinguishing it from the sampling-theory paradigm, 

is subjective probability, independent from the frequency of events under study (Ramsey, 1926; 

De Finetti, 1937; after Bernardo and Smith, 2000: 3, 15). In this approach, statistical inference 

can be seen as a decision problem, with strong relations between the concepts of probability and 

utility (Bernardo and Smith, 2000: 67–81). Interpretation of probability as a measure of belief on 

the phenomena under study, altered by the observations according to the Bayes theorem, has an 

advantage in social sciences, where the samples are by nature unrepeatable5.  

Due to the explicitly expressed subjectivism, the Bayesian approach developed in the 

opposition to the traditional, sampling-theory mathematical statistics. Contemporarily, the 

attempts to reconcile the two paradigms include the ‘objective Bayesianism’, assuming no prior 

information (Bayarri and Berger, 2004), and the pragmatic approach, allowing for choosing the 

methodology, depending on the nature of the research (Chatfield, 2002).  

In the Bayesian approach, an important issue is the selection of the prior probability 

distribution of the estimated parameters, p(θ), reflecting the knowledge of the researcher, or lack 

thereof in the case of non-informative distributions introduced by Jeffreys (1939). Selection of an 

informative prior distribution is usually supported by the expert judgement. An analysis of 

robustness of the results against changes in the prior distribution is an important element of 

Bayesian inference. A natural outcome of the analysis is the posterior distribution p(θ|x), which can 

be summarised by its point characteristics (mean, median, etc.), or credible intervals, analogous to 

confidence intervals in the sampling-theory statistics, but without problems and inconsistencies 

regarding the interpretation of the latter (Jaynes, 1976).  

The construction of such an interval for θ, with the posterior probability that θ is actually 

located within this interval set to equal 1–γ, can be for example performed by determining such 

kγ that would satisfy the condition (Silvey, 1978: 203): 

(2)     ∫
>

−=
})|(:{

1)|(
γθθ

γθθ
kxp

dxp . 

The formula (2) may concern not only the univariate θ, but also its multivariate 

generalisation, θ. The interval (or, in multivariate cases, region) (2) contains all a posteriori most 

                                                 
5 A more detailed discussion on the advantages of Bayesian inference in social sciences under non-repeatability of 
samples is presented by Withers (2002), with focus on applications in human geography. 
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likely values of θ, so it is called a highest posterior density (HPD) interval (region). Moreover, each 

value of θ outside (2) is less likely than any value from this interval (region). In certain cases, 

when θ is univariate and the posterior distribution p(θ|x) is unimodal, the quantiles of rank γ/2 

and 1–γ/2 from p(θ|x) can be simply taken as the respective lower and upper limits of the 

Bayesian interval (Bernardo and Smith, 2000: 259–262). 

Forecasting in the Bayesian approach is based on the construction of a probability 

distribution of the vector of future values of the variable under study, xF, conditional on the 

vector of past (observed) values, x, and taking into account the posterior knowledge on the 

parameters of the forecasting model, θ. The predictive probability distribution of xP can be 

calculated according to the following formula: 

(3)   ∫∫
ΘΘ

⋅== θxθxθxθxθxxx FFF dppdpp )|(),|()|,()|( .  

The predictive density (3) can be interpreted as an average from the conditional predictive 

distribution p(xP|θ,x), weighted with the posterior probabilities of the parameters (Zellner, 1971: 

29). A natural outcome of Bayesian forecasts are the predictive credible regions, which formally 

reflect the uncertainty of the phenomenon under study.  

Bayesian methodology can reduce estimation and prediction errors in such cases, when 

the prior distribution is informative and consistent with the observations. For non-informative 

priors, the ex-ante errors in one-dimensional problems are often the same as in the traditional 

maximum likelihood estimation (Bernardo and Smith, 2000: 359). This is important in the small-

sample studies (e.g., with population disaggregated by sex, age, regions, etc.), where the prior 

information has relatively more weight in the posterior result than the observations, unlike in 

large datasets. The extreme estimates obtained from small-sample data are in this way corrected 

towards the prior expectations. The same applies to forecasting models based on short time 

series, where the Bayesian approach is a way to reduce uncertainty, due to the explicitly included 

prior knowledge – a subjective element of the analysis. 
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2.3. Existing Bayesian forecasts of international migration flows 

 

The existing examples of international migration models and forecasts based on the 

Bayesian framework are scarce6. Gorbey et al. (1999) used vector autoregression models VAR(4) 

to forecast migration between Australia and New Zealand, both within the sampling-theory and 

Bayesian paradigms. The authors tested four models based on different vectors of interdependent 

variables, including net migration rates, growth of the real GDP ratio (or the real income ratio) 

for the two countries, differences in unemployment rates, country-specific unemployment growth 

indices, etc. For model coefficients, they used the Minnesota priors, with parameters on the first 

lags of the same variables following a priori a normal distribution with the mean equal one, and 

the parameters of the remaining interrelations – a normal distribution with the mean equal zero. 

This reflects an a priori assumption that the time series of each variable is most likely generated 

independently by a random walk process. Further, the authors assumed that the variances of the 

normal priors are based on standard errors estimated from the observations for the variable-

specific univariate autoregressive models. As such priors are data-based, this is not a fully 

Bayesian approach, where prior distributions are specified independently from the data7.  

 The econometric study of Brücker and Siliverstovs (2005) also contains some elements of 

a Bayesian analysis. The authors proposed a partial adjustments model with shares of migrants in 

particular destination countries changing stepwise towards their long-term equilibrium levels. The 

model is also based on wage levels and differentials, employment rates, proximity indicators and 

institutional dummies, while the error term is decomposed into the country-specific effects and 

the white noise. The Bayesian framework is, however, considered by the authors only as an 

alternative methodology of estimation, without any mention of the prior distributions used in the 

analysis, and without the a posteriori uncertainty assessment, which elements are both inherent in 

the Bayesian approach.  

An example of a partial departure from the sampling-theory statistical paradigm in 

demographic forecasting is the concept of ‘expert-based probabilistic population projections’ 

developed by Lutz et al. (1996, 2004). The method applies subjective expert judgement to set the 

framework for the stochastic forecasts. In formal terms, the forecasting model assumes random 

                                                 
6 In general, the Bayesian approach had limited applications in demographic forecasting up to date. One example is a 
forecast of the Iraqi Kurdish population under limited statistical information (Daponte et al., 1997). Other Bayesian 
predictions of particular components of population change include fertility (Tuljapurkar and Boe, 1999), and 
mortality (Girosi and King, 2005). Population flows other than migration have been modeled and forecasted also by 
Congdon (2000) in his study of moves of patients to hospitals in England. Recently, Alho and Spencer (2005: 244–
248, 269–277) have discussed prediction intervals based on the subjective probability, as well as Bayesian forecasting 
methods for selected time series models, both in the context of population predictions. 
7 I am very grateful to Prof. Jacek Osiewalski for drawing my attention to this problem. 
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deviations from the mean trajectory of the process under study, formulated a priori on the basis of 

the subjective expert opinion. For global forecasts of international migration, Lutz et al. (2004) 

applied a time-invariant mean trajectory, and assumed that the random component follows the 

moving average process MA(30). Although this approach is not fully Bayesian, the explicitly 

expressed subjectivity makes it a hybrid of the traditional and Bayesian methods. 

In the presented examples, the forecasting models of international migration either are 

not fully Bayesian in terms of independence of prior distributions from the data sample, or do 

not discuss the results in probabilistic terms. Moreover, none of them seems to have so far 

explored the potential offered by the Bayesian statistical framework in relation to formal model 

selection and averaging. The current paper aims therefore at filling these gaps. 

 

3. Methodological foundations of Bayesian model selection and averaging 

 

3.1. Bayesian model selection 

 

The Bayesian methodology allows for a formal model selection by comparing the posterior 

odds of different models, given the data, in order to maximally utilise information from the sample 

of observations8. After Osiewalski (2001: 21–22), let M1, …, Mm be mutually exclusive (not 

nested) models of the phenomenon under study, adding up to the whole (finite) space of possible 

models, M. Assuming prior probabilities p(M1), …, p(Mm) for the respective models, the Bayes 

theorem yields their posterior probabilities, given the data x: 

(4)    
∑ ∈

⋅
⋅

=
Mk kk

ii
i MxpMp

MxpMp
xMp

)|()(
)|()(

)|( . 

In (4), p(x|Mi) denotes the marginal density of data in the i-th model, corresponding to p(x) in 

equation (1).  

The posterior probabilities of alternative models i and j can be used for their direct 

comparison, based on the calculation of the posterior odds ratio, Rij: 

(5)    
)|()(
)|()(

)|(
)|(

jj

ii

j

i
ij MxpMp

MxpMp
xMp
xMp

R
⋅
⋅

== . 

Values of Rij > 1 indicate that given the data x and priors p(Mi) and p(Mj), the model i is more 

likely to accurately describe the phenomenon under study than the model j, while Rij ∈ [0, 1) 

gives preference to the model j over i. Some authors argue that it is useful to set threshold values 
                                                 
8 Technical details are offered in Zellner (1971: 291–317), and Osiewalski (2001: 20–24). 
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for Rij, denoted OL and OR (OL < OR), so that Rij < OL provides ‘strong evidence’ in favour of the 

model j, Rij > OR for the model i, while Rij ∈ [OL, OR] is inconclusive (Hoeting et al., 1999: 385). 

This issue is also discussed in the next subsection, devoted to the Bayesian model averaging. 

Osiewalski (2001: 21–22) noted that the posterior odds ratio may heavily depend on the 

priors selected for particular models. It is often assumed that all models have equal prior 

probabilities, especially when there are no arguments for the opposite. In such a case, (5) is 

reduced to the likelihood ratio test, which is also used in the sampling-theory statistics. On the 

other hand, it may be argued that the formal selection criteria should favour simpler (more 

straightforward) explanations of the phenomena under study, according to the Occam’s razor 

principle9. In such a case, the number of the parameters in the i-th model, li, can be taken as the 

measure of complexity, and the prior probabilities set in such a way that p(Mi) is proportional to 

il−2 (Osiewalski, 2001: 21). Naturally, there many other ways of assuming the priors on the basis 

of the expert judgement, which for some reasons may favour one or a group of models. 

 

3.2. Bayesian model averaging (inference pooling) 

  

With respect to demographic forecasting, Ahlburg (1995) noted that there is no firm 

evidence, whether simple models perform better (or worse) than the more complex ones. He also 

criticised the quest for the single ‘best’ forecasting model and suggested that the accuracy of the 

outcome can be improved by combining various forecasts. In the Bayesian approach, this 

possibility has been explored within the framework of inference pooling, currently known as Bayesian 

model averaging, which allows for merging the features of various predictive models in order to 

reduce the uncertainty of model specification (Hoeting et al., 1999)10. 

Following the notation used in (3), let xF denote the vector of future values of the 

variable under study. Then, the conditional density of the averaged predictive distribution of xF 

over the model space M, given the data x, denoted by )|( xxFp , can be calculated as follows 

(Hoeting et al., 1999: 383; Osiewalski, 2001: 24): 

(6)    ),|()|()|( ii i MpMpp xxxxx F
M

F ∑∈
⋅= . 

                                                 
9 According to the Merriam-Webster Online Dictionary, ‘Occam’s razor’ [or ‘Ockham’s razor’] is “a scientific and 
philosophic rule that entities should not be multiplied unnecessarily, which is interpreted as requiring that the 
simplest of competing theories be preferred to the more complex, or that explanations of unknown phenomena be 
sought first in terms of known quantities” («http://www.m-w.com», accessed on 31 March 2006). A thorough 
discussion of the ‘Occam’s razor’ notion in the Bayesian context is given by Jeffreys and Berger (1992). 
10 For a discussion of various options on acknowledging the model error in demographic forecasting, see Alho and 
Spencer (2005: 240–242). 
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The element p(xF|x, Mi) corresponds to the predictive distribution (3) in the i-th model, while 

p(Mi|x) is the posterior probability of the i-th model, defined in (4). 

The pre-selection of models for the purpose of their averaging can be also done on the 

basis of posterior odds, according to the ‘Occam’s razor’ principle. In this context, Hoeting et al. 

(1999: 385) corroborate on the idea of the threshold values OL and OR for the posterior odds 

ratio, Rij, as defined in the previous subsection. They label the interval [OL, OR] as Occam’s window 

and suggest that models that have strong evidence against them (such models i, for which  

Rij < OL) be disregarded in the pre-selection process. In order to apply the Occam’s principle, the 

values of OL and OR should be set in favour of simpler models. For example, if the i-th model has 

a simpler structure (less parameters) than the j-th model, then OL = 1/20 and OR = 1, as 

advocated by Madigan and Raftery (1994; after: Hoeting et al., 1999: 385), strongly support the 

former one in the pre-selection procedure. Alternatively, Raftery et al. (1996; after: Hoeting et al., 

idem) proposed setting OL = 1/20 and OR = 20. They found that these values lead to the 

improved performance of the averaged predictions made on the basis of the ultimately selected 

models, yet without an explicit reference to the Occam’s principle.  

 

4. Empirical application: migration between selected European countries, 2005–2010 

 

4.1. Data: sources, quality, and adjustments 

 

The current study aims at producing Bayesian forecasts of long-term international 

migration flows between Germany and three European countries: Poland, Italy, and Switzerland, 

for the period 2005–2010. The forecast horizon ends prior to the expected for 2011 opening of 

the German labour market for Polish citizens. The analysis employs macro-level data on 

migration flows and population stocks for 1985–2004 (in the case of flows from/to Poland for 

1991–2004, thus after the system transformation). The data used originate from the population 

registers of the countries under study, and are taken either from the Eurostat (NewCronos 

database), or from the websites of respective statistical offices. The German data prior to 1991 

concern West Germany. With regard to migration between Poland and Germany, it has to be 

noted that the official statistics of neither country cover the short-term Polish seasonal labour 

migration undertaken under a bilateral agreement between the two countries. A significant source 

of migration, only in 2002 amounting to 272 thousand persons (Okólski, 2004: 206), is therefore 

excluded from the analysis.  
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As the numbers of migrants reported by the origin and destination countries usually 

differ, the greater of the two values has been taken as the estimate of the real magnitude of each 

of the flows, following Kupiszewski (2002: 111–112). In practice it means that, as Germany 

applies one of the broadest definitions of migratory events in Europe (Nowok et al., 2006: 218), 

the German data on migration have been taken almost universally. The only exception are flows 

from Germany to Switzerland in the period 2001–2004, where the Swiss figures on incoming 

German citizens have been used, being slightly larger than the German ones. 

Subsequently, the numbers of registered long-term migrants have been transformed into 

crude occurrence-exposure emigration rates, the logarithms of which are subject of forecasting. 

As the size of the population at risk (denominator of the rate), the mid-year population of the 

sending country has been used. As in the data on Polish population stocks in 2002 there is a 

discontinuity in trend caused by underestimated international emigration prior to the recent 

population census, a simple correction has been applied based on the census results. The 

‘statistical adjustment’ of –390,300 persons has been distributed over the period 1988–2002, 

proportionally to the size of net migration from Poland registered in Germany. As for 1993 the 

German sources themselves include an administrative adjustment of the Polish migrant stock by 

–23,000 persons, this quantity has been distributed uniformly over the period 1988–1992, in 

order to adjust the German population stocks, as well as the magnitude of inflows from Poland. 

 

4.2. Specification of the forecasting models 

 

Let mx-y(t) denote logarithms of emigration rates from country x to y per 1,000 population 

of the country of origin, in year t, where x, y ∈ {CH, DE, IT, PL} for Switzerland, Germany, 

Italy, and Poland, respectively. The logarithmic transformation has been used, as emigration rates 

are by definition positive numbers.  

For each of the variables mx-y(t), let the following five simple types of models, belonging 

to the wide class of the autoregressive integrated moving average (ARIMA) models (Box and 

Jenkins, 1976), be defined (the indices x and y are skipped for the transparency of presentation): 

 M1: m(t) = c1 + ε1(t) / oscillations around a constant 

 M2: m(t) = c2 + m(t–1) + ε2(t) / random walk with drift 

 M3: m(t) = c3 + φ3 m(t–1) + ε3(t); φ3 ≠ 0 ∧ φ3 ≠ 1 / autoregressive process AR(1) 

 M4: m(t) = c4 + ε4(t) – θ4 ε4(t–1); θ4 ≠ 0 / moving average process MA(1) 

 M5: m(t) = c5 + φ5 m(t–1) + ε5(t) – θ5 ε5(t–1); φ5 ≠ 0, θ5 ≠ 0  / ARMA(1,1) process 
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In all models M1, …, M5, εi(t) denotes the Gaussian white noise, εi(t) ~ N(0, σi
 2).  

The whole class M covers all autoregressive moving average ARMA(1,1) models, in 

general terms specified as m(t) = c + φ m(t–1) + ε(t) + θ ε(t–1). The mathematical formulation of 

particular models M1, …, M5 depends on the values of parameters φ and θ, as shown in Table 1. 

 

Table 1. Specification of forecasting models in the ARMA(1,1) class 

Parameter θ Parameter φ 
θ = 0 θ ≠ 0 

φ = 0 M1 M4 
φ = 1 M2 
φ ≠ 0 ∧ φ ≠ 1 M3 } M5 

Source: own elaboration 

 

Such classification satisfies the conditions to apply the Bayesian model selection and averaging 

techniques, as M1, …, M5 are mutually exclusive and add up to the whole model space, M. 

As the analysis is primarily designed to illustrate the methods rather than to obtain the 

best-possible migration predictions, which should consider a wider class of models and include 

other explanatory variables, the forecasting models are limited to simple stochastic processes. 

Nevertheless, some of these models have already been used in forecasting international migration 

on the basis of time series within the sampling-theory approach. The examples include a study of 

de Beer (1997), who modelled migration to and from the Netherlands by an AR(1) process (M3), 

and net migration by an MA(1) process (M4). For Norway, Keilman et al. (2001) modelled 

immigration by means of an ARMA(1,1) process (M5), and emigration using a random walk (M2). 

Alho (1998) predicted migration for Finland using an ARIMA(0,1,1) model, combining a random 

walk with a moving average component. 

With respect to the prior distributions of the model parameters, it is assumed that they 

are the same for the models M1, …, M5, wherever applicable. Let the constants ci follow a diffuse 

(rather non-informative) normal prior distribution N(0, 1002). Further, I assume that the priors 

for the autoregression parameters φi are also normal, yet more informative, following N(0.5, 12). 

This assumption reflects my belief that the autoregressive parts of appropriate models are likely 

stationary. For θi, I also take normal priors N(0.5, 12), which indicate some level of uncertainty as 

to the degree of smoothing in the moving average parts of the respective models. Finally, the 

precision parameters τi of the error terms εi(t), being reciprocal of the variances, τi =1/σi
2, are 

assumed to follow a Gamma distribution with scale parameter α = 0.5 and shape parameter ν = 
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= 0.5. Such a distribution has expected value ν/α = 1 and variance ν/α2 = 2, what reflects my a 

priori belief in a relatively low precision of estimation. 

The estimation has been performed using the Markov chain Monte Carlo (MCMC) 

algorithm of numerical integration, implemented in the WinBUGS 1.4 software (Spiegelhalter et 

al., 2003). For computational simplicity, no constraints for φi and θi have been set in the models 

M3, M4, and M5, as the values that should be excluded (0 and/or 1) have probability of occurring 

equal zero. The WinBUGS code used for the computations is listed in the Annex to the paper11. 

 

4.3. Estimation of the models 

 

For each of the time series of migration flows under study, mx-y(t), all five aforementioned 

models M1, …, M5 have been estimated. The posterior distributions of the parameters of each 

model have been calculated on the basis of 100,000 iterations of the MCMC algorithm, obtained 

after discarding the preceding iterations from the ‘burn-in’ phase of the procedure. After visual 

checks of convergence of the simulations following the suggestions of Spiegelhalter et al. (2003), 

the length of the ‘burn-in’ phase has been established as 10,000.  

Results of the estimation of particular models are presented in Table 2, summarising the 

posterior distributions of parameters with their median values and the quantiles of rank 0.025 and 

0.975, denoting the 95 percent credible intervals. All estimates have been obtained from the 

MCMC simulations. Note that, as the posterior distributions of parameters are unimodal, the 

intervals derived on the basis of respective quantiles have the HPD property defined in (2). 

As shown in Table 2, the credible intervals for ci, φi, and θi that do not cover zero, what 

indicates the ‘significance’ of the estimates, consider a minority rather than a majority of models. 

This reflects high uncertainty of the processes under study, some of which do not perfectly fit 

into the proposed framework based only on simple models from the ARMA(1,1) class. This gives 

a rationale for the future research to further extend the model space M, for example to ARIMA 

models, both with and without constants, as suggested by Alho and Spencer (2005: 217). 

                                                 
11 Examples of WinBUGS programmes of univariate AR(p), MA(q) and ARMA(p,q) models, which have been helpful 
in preparing the current paper, are provided by Congdon (2003: 172–189, Programmes 5.1–5.3). With respect to the 
moving average component, Congdon (2003: 187) argues that due to the way WinBUGS operates (based on the 
centred Normal form), there is a need for assuming an additional error term, u(t) ~ N(0, σu

2), which for the MA(1) 
model would yield: m(t) = c + ε(t) – θ ε(t–1) + u(t). In my view, this is an unnecessary complication of calculations, 
which can lead to unreasonable results. Therefore, in the current study I apply the standard moving average model, 
without the u(t) term, which nevertheless uses the centred Normal form (see Annex). 
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Table 2. Summaries of posterior distributions of forecasting models’ parameters: median, 2.5 and 97.5 percent quantiles (estimated by MCMC) 

 Constant ci  Autoregression parameter φi  Moving average parameter θi  Precision τi = 1/σi
2 Model Mi 

  2.5% median 97.5%   2.5% median 97.5%   2.5% median 97.5%   2.5% median 97.5% 
Migration from Italy to Germany, mIT-DE 
M1  –0.59 –0.43 –0.27  - - -  - - -  4.20 8.71 15.64 
M2  –0.15 –0.04 0.07  - - -  - - -  7.86 18.07 35.38 
M3  –0.28 –0.02 0.22  0.46 1.03 1.58  - - -  7.09 15.81 32.91 
M4  –0.66 –0.43 –0.21  - - -  –1.09 –0.68 –0.10  5.65 11.99 22.12 
M5   –0.36 –0.04 0.22  0.29 0.98 1.56  –0.92 –0.44 0.33  7.73 19.52 38.64 
Migration from Germany to Italy, mDE-IT 
M1  –0.84 –0.69 –0.55  - - -  - - -  5.45 11.25 20.25 
M2  –0.14 –0.04 0.07  - - -  - - -  8.46 18.84 40.46 
M3  –0.51 –0.19 0.12  0.31 0.77 1.21  - - -  8.51 20.71 44.85 
M4  –0.89 –0.69 –0.49  - - -  –1.05 –0.63 –0.01  6.67 14.16 26.90 
M5   –0.62 –0.21 0.15  0.14 0.74 1.25  –0.96 –0.32 0.51  8.49 20.70 44.88 
Migration from Poland to Germany, mPL-DE 
M1  0.76 0.94 1.13  - - -  - - -  3.83 9.75 20.23 
M2  –0.19 0.00 0.19  - - -  - - -  3.62 9.07 18.71 
M3  –0.38 0.52 1.42  –0.47 0.45 1.38  - - -  3.74 9.95 21.58 
M4  0.74 0.95 1.20  - - -  –1.07 –0.28 0.68  3.97 10.96 24.41 
M5   –0.36 0.60 1.58  –0.61 0.37 1.36  –1.04 –0.19 0.73  3.78 10.21 22.88 
Migration from Germany to Poland, mDE-PL 
M1  –0.19 0.00 0.19  - - -  - - -  3.83 9.58 19.85 
M2  –0.19 –0.01 0.16  - - -  - - -  4.21 11.03 23.70 
M3  –0.18 –0.01 0.16  –0.24 0.58 1.40  - - -  4.22 11.67 26.08 
M4  –0.24 0.00 0.25  - - -  –1.06 –0.37 0.62  3.99 10.46 23.35 
M5   –0.22 –0.01 0.22  –0.48 0.50 1.36  –0.95 –0.16 0.75  4.09 11.26 25.34 
Migration from Switzerland to Germany, mCH-DE 
M1  0.01 0.12 0.23  - - -  - - -  8.52 18.08 39.60 
M2  –0.09 0.01 0.12  - - -  - - -  9.10 20.71 46.79 
M3  –0.11 0.05 0.21  –0.57 0.63 1.79  - - -  8.74 19.46 45.20 
M4  –0.03 0.12 0.26  - - -  –0.95 –0.29 0.60  8.69 18.70 42.97 
M5   –0.13 0.05 0.25  –0.72 0.60 1.85  –0.93 –0.24 0.64  8.74 19.23 45.26 
Migration from Germany to Switzerland, mDE-CH 
M1  –2.19 –2.04 –1.88  - - -  - - -  4.68 9.59 17.10 
M2  –0.06 0.03 0.13  - - -  - - -  8.86 22.18 42.08 
M3  –1.03 0.21 1.33  0.49 1.09 1.62  - - -  7.95 18.68 40.26 
M4  –2.24 –2.03 –1.81  - - -  –1.07 –0.64 –0.06  5.90 12.46 22.87 
M5   –1.54 0.13 1.44  0.24 1.05 1.68  –0.90 –0.24 0.48  7.66 17.13 38.04 

Notes: Boldface denotes 95 percent credible intervals for the estimates of ci, φi, and θi, which do not cover zero.  
Source: own elaboration in WinBUGS 
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With respect to particular parameters, the constants ci proved to be much less diffuse than 

assumed a priori. The posterior estimates of autoregressive coefficients φi, appear to be consistent 

with the priors in four models (for mDE-IT, mPL-DE, mDE-PL, and mCH-DE), indicating the likely 

stationarity of the AR(1) component. In the remaining two cases (mIT-DE and mDE-CH) the values of 

φi are likely greater than one, providing arguments for non-stationarity. The posterior estimates of 

the moving average parameters θi, all likely being negative, strongly disagree with my prior beliefs 

in probably positive values of this parameter.  

In all cases, the estimated precision parameters τi = 1/σi
2 have been higher, on average 

more than ten times, as compared to the values assumed a priori. This indicates that the prior 

assumption on a relatively low precision of estimation was too pessimistic, as the data indicated 

the opposite. Nevertheless, even small samples of 20 observations (or 14 in the case of migration 

to and from Poland) were able to correct the improper prior beliefs and give relatively much 

weight to the data in the posterior distributions of the parameters. 

 

4.4. Results of Bayesian model selection: posterior probabilities  

 

Following the discussion in Section 3.1, two alternative types of prior distributions for the 

models M1, …, M5 have been set: the non-informative uniform one, with p(Mi) = 0.2, and the 

‘Occam’s razor’ one, with p(Mi) proportional to il−2 , li denoting the number of parameters of the 

i-th model. Both types of prior distributions over the model space M, and the respective 

posterior probabilities p(Mi|x), estimated using the MCMC algorithm, are presented in Table 3. 

A comparison of the posterior odds ratios Rij defined in (5), on the basis of probabilities 

shown in Table 3, yields that for half of the forecasted flows (mPL-DE, mCH-DE, and mDE-CH) both 

types of priors lead to the selection of the same model: in two latter cases – a random walk with 

drift (M2), in the former one – a moving average MA(1) process (M4). In two other cases (mDE-IT, 

and mDE-PL), assuming the Occam’s prior instead of the equiprobable one changed the posterior 

odds-based decision on the model selection from the autoregressive model M3 to the simpler 

random walk M2. For migration from Italy to Germany (mIT-DE), the decision changed analogously 

from the moving average process (M4) to the random walk (M2). The simplicity of the latter is the 

reason, why the posterior probabilities under the ‘Occam’s razor’ prior are visibly higher than the 

ones under the non-informative prior, for all flows under study. Especially in such cases, where 

the posterior probabilities of particular models under a uniform prior are very similar, the 

‘Occam’s razor’ prior penalises models with more parameters.  

 



 17

Table 3. Prior and posterior probabilities for models Mi : non-informative and ‘Occam’s razor’ 
Model (Mi) M1 M2 M3 M4 M5 Σ 
Prior probabilities  

(A) Non-informative prior, p(Mi) ∝ const. 0.200 0.200 0.200 0.200 0.200 1 
(B) ‘Occam’s razor’ prior, p(Mi) ∝ 2^(–li) 0.308 0.308 0.154 0.154 0.077 1 

Migration from Italy to Germany, mIT-DE 
p(Mi|x), prior (A) 0.000 0.347 0.205 0.007 0.441 1 
p(Mi|x), prior (B) 0.000 0.616 0.181 0.007 0.196 1 

Migration from Germany to Italy, mDE-IT 
p(Mi|x), prior (A) 0.000 0.249 0.367 0.018 0.366 1 
p(Mi|x), prior (B) 0.000 0.456 0.356 0.016 0.171 1 

Migration from Poland to Germany, mPL-DE 
p(Mi|x), prior (A) 0.155 0.092 0.198 0.313 0.241 1 
p(Mi|x), prior (B) 0.272 0.168 0.175 0.275 0.111 1 

Migration from Germany to Poland, mDE-PL 
p(Mi|x), prior (A) 0.079 0.207 0.291 0.171 0.252 1 
p(Mi|x), prior (B) 0.135 0.361 0.249 0.147 0.108 1 

Migration from Switzerland to Germany, mCH-DE 
p(Mi|x), prior (A) 0.119 0.283 0.224 0.166 0.208 1 
p(Mi|x), prior (B) 0.187 0.431 0.173 0.128 0.081 1 

Migration from Germany to Switzerland, mDE-CH 
p(Mi|x), prior (A) 0.000 0.469 0.311 0.003 0.217 1 
p(Mi|x), prior (B) 0.000 0.684 0.232 0.002 0.081 1 

Notes: Boldface indicates highest posterior probabilities of models for particular migratory flows. Some numbers 
may not add up to 1 due to rounding. 
Source: own elaboration in WinBUGS 
 

Applying formal criteria for Rij can help identify models with the relatively biggest 

disagreement with data, for example by setting OL = 1/20 and OR = 20 after Raftery et al. (1996). 

For models of migration from Italy to Germany (mIT-DE) and from Germany to Switzerland  

(mDE-CH), the ratios that do not fall into the [OL, OR] window include all Rij involving models M1 

and M4. Almost the same applies for models of migration from Germany to Italy (mDE-IT), with 

two slight exceptions: R42 = 0.07 under the uniform prior and R54 = 10.7 under the ‘Occam’s 

razor’ fit within the [OL, OR] interval. This indicates the implausibility of using the oscillations 

model M1, as well as the moving average model M4, for the three mentioned migratory flows. 

 

4.5. International migration predictions: formally-selected and averaged models 

 

Forecasts of migration between the countries under study for the period 2005–2010 have 

been made within the same WinBUGS programme (see Annex). Predictive distributions of 

respective emigration rates, showing their median values, and the 80 percent predictive intervals12 

for 2006, 2008, and 2010, are summarised in Table 4. The forecasted values are presented for all 

                                                 
12 In probabilistic population forecasting, 80 percent predictive intervals are commonly applied, either instead, or 
alongside the 95 percent intervals traditionally used in statistical inference (see Alho, 1998; Keilman et al., 2001; Lutz 
et al., 2004). The rationale is to avoid unnecessary amplification of the uncertainty assessment, which is already high 
in demographic predictions. Lutz et al. (2004: 37) argue that they “prefer to use 80 percent intervals […] because the 
forecast distributions are themselves uncertain at the extremities. The 80 percent intervals are far more robust to the 
technicalities in the forecasting methodology than the 95 percent intervals”.  
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models M1, …, M5, as well as for the averaged ones, applying posterior probabilities listed in 

Table 2. Due to the unimodality of the predictive distributions, the quantile-based predictive 

intervals also have the HPD property defined in (2).  

 

Table 4. Summaries of predictive distributions of emigration rates forecasted for 2006, 2008 and 

2010: median, 10 and 90 percent quantiles (estimated by MCMC) 
 2006  2008  2010 Model 
  10% median 90%   10% median 90%   10% median 90% 

Rates of emigration from Italy to Germany, exp(mIT-DE) 
M1*  0.42* 0.65* 1.02*  0.42* 0.65* 1.03*  0.42* 0.65* 1.03* 
M2 (B)  0.21 0.37 0.65  0.16 0.34 0.73  0.13 0.32 0.81 
M3  0.12 0.35 0.69  0.03 0.31 0.77  0.00 0.28 0.83 
M4*  0.40* 0.65* 1.04*  0.40* 0.65* 1.05*  0.40* 0.65* 1.05* 
M5 (A)  0.14 0.37 0.72  0.05 0.35 0.85  0.01 0.33 0.93 
Mavg (A)  0.18 0.36 0.64  0.11 0.33 0.71  0.05 0.30 0.76 
Mavg (B)   0.20 0.36 0.63   0.14 0.33 0.69   0.09 0.31 0.73 
Rates of emigration from Germany to Italy, exp(mDE-IT) 
M1*  0.33* 0.50* 0.74*  0.34* 0.50* 0.75*  0.34* 0.50* 0.75* 
M2 (B)  0.21 0.37 0.64  0.16 0.34 0.72  0.13 0.32 0.78 
M3 (A)  0.26 0.42 0.64  0.23 0.43 0.68  0.21 0.43 0.71 
M4*  0.33* 0.50* 0.77*  0.33* 0.50* 0.77*  0.33* 0.50* 0.77* 
M5  0.26 0.43 0.70  0.22 0.44 0.75  0.19 0.44 0.78 
Mavg (A)  0.26 0.42 0.64  0.23 0.41 0.68  0.21 0.41 0.70 
Mavg (B)   0.25 0.40 0.63  0.22 0.39 0.66  0.19 0.38 0.68 
Rates of emigration from Poland to Germany, exp(mPL-DE) 
M1  1.66 2.57 3.98  1.66 2.57 3.97  1.66 2.57 3.99 
M2  1.19 2.73 6.30  0.87 2.73 8.54  0.66 2.72 11.32 
M3  1.50 2.61 4.62  1.40 2.59 4.94  1.34 2.59 5.14 
M4 (A, B)  1.62 2.60 4.19  1.62 2.60 4.18  1.62 2.60 4.17 
M5  1.46 2.62 4.96  1.37 2.61 5.26  1.33 2.60 5.47 
Mavg (A)  1.53 2.61 4.50  1.49 2.60 4.58  1.46 2.59 4.63 
Mavg (B)   1.53 2.62 4.52  1.47 2.60 4.68  1.44 2.60 4.76 
Rates of emigration from Germany to Poland, exp(mDE-PL) 
M1  0.64 1.00 1.54  0.64 1.00 1.54  0.64 1.00 1.55 
M2 (B)  0.46 0.98 2.06  0.34 0.95 2.66  0.25 0.93 3.35 
M3 (A)  0.57 0.98 1.71  0.51 0.98 1.82  0.47 0.98 1.92 
M4  0.62 1.00 1.62  0.62 1.00 1.62  0.62 1.00 1.62 
M5  0.55 0.98 1.77  0.51 0.98 1.89  0.48 0.97 1.97 
Mavg (A)  0.58 0.99 1.69  0.54 0.98 1.76  0.52 0.98 1.81 
Mavg (B)   0.56 0.99 1.72  0.52 0.98 1.83  0.48 0.98 1.90 
Rates of emigration from Switzerland to Germany, exp(mCH-DE) 
M1  0.82 1.12 1.53  0.82 1.12 1.53  0.82 1.12 1.53 
M2 (A, B)  0.72 1.21 2.05  0.62 1.25 2.52  0.54 1.29 3.04 
M3  0.76 1.17 1.92  0.70 1.17 2.42  0.65 1.17 3.25 
M4  0.80 1.12 1.58  0.80 1.12 1.57  0.80 1.12 1.58 
M5  0.73 1.16 2.01  0.66 1.17 2.61  0.60 1.17 3.72 
Mavg (A)  0.79 1.16 1.75  0.76 1.17 1.92  0.74 1.18 2.07 
Mavg (B)   0.79 1.17 1.77  0.76 1.17 1.94  0.73 1.18 2.12 
Rates of emigration from Germany to Switzerland, exp(mDE-CH) 
M1*  0.08* 0.13* 0.20*  0.08* 0.13* 0.20*  0.08* 0.13* 0.20* 
M2 (A, B)  0.12 0.20 0.34  0.11 0.22 0.44  0.10 0.23 0.54 
M3  0.12 0.23 0.56  0.11 0.26 2.07  0.10 0.31 25.08 
M4*  0.08* 0.13* 0.21*  0.08* 0.13* 0.21*  0.08* 0.13* 0.21* 
M5  0.11 0.22 0.59  0.10 0.24 2.35  0.09 0.27 33.95 
Mavg (A)  0.13 0.22 0.40  0.12 0.24 0.66  0.12 0.27 1.49 
Mavg (B)   0.13 0.21 0.37  0.12 0.23 0.53  0.12 0.25 0.81 

Notes: Boldface denotes models selected on the basis of the posterior odds criterion (Table 2), as well as averaged 
models (Mavg). In both cases, (A) and (B) respectively denote the non-informative and ‘Occam’s razor’ model priors. 
Asterisks (*) indicate models that are hardly probable a posteriori, with p(Mi|x) < 0.05. 
Source: own elaboration in WinBUGS 
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In Table 4, asterisks indicate forecasts based on models with very low posterior 

probabilities (p(Mi|x) < 0.05). They are presented merely for the sake of comparison with the 

remaining ones, especially as their results in terms of predictions visibly differ from the outcome 

of the more probable models. For two selected flows, from Poland to Germany, and from 

Germany to Switzerland, various predictive distributions of the logarithms of respective 

emigration rates are also illustrated in Figure 1. 

 

Figure 1. Predictive distributions of mPL-DE and mDE-CH for 2006, 2008 and 2010: various models  

 a) migration Poland-Germany: mPL-DE b) migration Germany-Switzerland: mDE-CH 

  

  

  
Note: Mavg denotes averaged models (thick black lines). 
Source: own elaboration in WinBUGS 
 

On the example of forecasts of migration from Germany to Switzerland, it is worth 

noting that models with very low posterior probabilities (M1 and M4 in Figure 1) are almost 

entirely excluded from the calculations of the averaged models. It was even hardly necessary to 

remove M1 and M4 from the modelling framework, as they have effectively been excluded due to 

their strong disagreement with the data. From the demographic point of view, also the upper 

limits of the 80 percent credible intervals yielded by models M3 and M5 are also implausibly high 

(cf. Table 4), but these models are included in the averaged forecasts also to a limited extent. 
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If the models do not differ much from each other with respect to their posterior 

probabilities, and yield consistent predictions, as for flows from Poland to Germany, then the 

averaged models take all the single ones into account to a similar degree. 

The predicted median values, as well as the limits of the 80 percent predictive intervals 

for immigration to and emigration from Germany concerning the three countries under study in 

the period 2005–2010, are illustrated respectively in Figures 2 and 3. The graphs show the 

historical data series, on the basis of which the estimation was made, and the predictions from 

the formally-selected and averaged models, both under the uniform and ‘Occam’s razor’ priors. 

 

Figure 2. Forecasted immigration to Germany, 2005–2010: selected and averaged models  

 a) non-informative model priors b) ‘Occam’s razor’ model priors 
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Note: Trajectories for alternative priors may slightly differ, as they have been estimated in two separate simulations. 
Source: own elaboration in WinBUGS. Data series until 2004: Eurostat/NewCronos; national statistical offices 
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Figure 3. Forecasted emigration from Germany, 2005–2010: selected and averaged models  

 a) non-informative model priors b) ‘Occam’s razor’ model priors 
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Note: Trajectories for alternative priors may slightly differ, as they have been estimated in two separate simulations. 
Source: own elaboration in WinBUGS. Data series until 2004: Eurostat/NewCronos; national statistical offices 

 

From Figures 2 and 3 it seems that in a majority of cases the median forecast trajectory 

obtained from the model selected on the basis of the posterior odds criterion is almost the same 

as the one obtained from the averaged model. This conclusion is valid for both types of model 

priors. The most significant exception is migration from Germany to Italy under the ‘Occam’s 

razor’ prior, where the selected random-walk trajectory obtained from M2 has visibly lower values 

than the one based on the averaged model.  

With respect to the uncertainty of predictions made using particular models, there is no 

clear rule as to which one of them is higher. In some cases the predictive intervals of averaged 
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models are broader than the ones obtained from the models selected on the basis of posterior 

odds, which would reflect taking into account the uncertainty of the model selection process. 

Nevertheless, the opposite can also hold. The latter regards for example situations with relatively 

similar posterior model probabilities, where the selection criteria (posterior odds) indicate a 

model with a high variance, as M2 for migration from Switzerland to Germany under both priors, 

or from Germany to Poland under the ‘Occam’s razor’ prior. 

On the basis of the median trajectories derived from the respective predictive 

distributions (Figures 2 and 3), the obtained migration forecasts can be summarised as follows. In 

the period 2005–2010 it is expected that the propensity to migrate from Italy to Germany will 

visibly diminish. Some decline, although very slight, is also envisaged for migration in the 

opposite direction. In 2005, the both-ways migration between Germany and Poland is predicted 

to return to the levels observed before the increase in 2004, which was likely related to the 

accession of Poland to the European Union. From 2005 onwards the intensity of migration 

between both these countries is expected to remain almost constant until the end of the forecast 

horizon. Finally, the relative magnitude of flows between Germany and Switzerland in both 

directions is envisaged to increase, albeit very slightly, throughout the whole period 2005–2010. 

From the demographic point of view, the results of median forecasts of the intensities of all 

migratory movements under study seem therefore reasonable. 

A vast majority of averaged models also yielded plausible uncertainty ranges, slightly 

increasing with time and spanning realistic magnitudes of possible future migration flows. The 

only exception considers migration from Germany to Switzerland, where the upper limits of the 

80 percent predictive intervals are very high and increase very fast, as shown in Figure 3. This is 

due to the fact that the averaged predictions include the outcome of models M3 and M5, which 

themselves produce hardly plausible results (cf. Table 4). Moreover, in such cases applying the 

logarithmic transformation of the modelled variables additionally contributes to an 

overestimation of the upper bounds of predictive intervals due to the way the models are 

formulated. Hence, in the case of the German-Swiss migration, the uncertainty assessment 

should be made on the basis of the formally-selected model M2, rather than of the averaged one, 

as the results of the former are much closer to what can be reasonably believed for the future.  

It is also worth noting that in all cases the predicted uncertainty ranges are relatively wide. 

This is not surprising, given the inevitable problems underlying high errors of international 

migration forecasts that have been mentioned in Section 1, at the very beginning of the paper. 

Although median forecasts are merely the continuation of past trends, there is a high probability 

that the actual migration developments will substantially deviate from the central trajectories. 
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Therefore, apart from the median projections, the presented forecasts provide the policy makers 

with an important piece of information: uncertainty related to migration predictions between the 

countries under study is high and it should be properly acknowledged in the policy decisions.  
 

5. Conclusion 

 

General advantages of the use of Bayesian methods in forecasting international migration 

have been discussed in Bijak (2005: 21). Firstly, Bayesian forecasting contains an inherent 

quantitative analysis of uncertainty, embodied in the predictive distributions of the variables 

under study. Secondly, Bayesian statistics allows for pooling the features of various forecasting 

models in a formal way, which has been explored in the current paper using the model selection 

and averaging techniques. Thirdly, methods including subjective prior information in addition to 

statistical observations allow for a formal inference in small-sample studies, as in the presented 

forecasts based on relatively short time series. Finally, the independence of the concept of 

probability from the frequency of events under study allows for avoiding certain problems with 

interpretation of results, including the assumption of a repeatable sample. The latter is especially 

important in social sciences, including migration research, where the samples are usually unique. 

The Bayesian model selection procedures presented in the current paper allow for 

incorporating the prior knowledge on the plausibility of particular models in the ultimate 

decisions, on which one to use for producing forecasts. One option is the a priori equiprobability 

of models, but the analysis can be designed so as that the prior beliefs prefer the simple models 

over the more complex ones, according to the ‘Occam’s razor’ principle.  

The Bayesian model averaging technique provides an alternative, in which the forecasts 

from various models are combined together. According to Hoeting et al. (1999: 398), its 

advantages include a better (in theory) predictive performance than any single model, no need to 

justify the use of any particular model, and a possibility to incorporate several competing models 

proposed by different researchers working on the topic under study. Moreover, as noted by 

Hoeting et al. (1999: 399), “model averaging is more correct because it takes account of a source 

of uncertainty that analyses based on model selection ignore”, and that “[its] conclusions are 

more robust than those that depend upon the particular model that has been selected”.  

A general disadvantage of Bayesian model selection and averaging techniques – the 

seeming complexity of computations – can be overcome by using numerical tools available in 

easily-accessible software packages like the WinBUGS. 

There are several options of additional studies on the presented methodological aspects 

of Bayesian forecasting, not discussed in the current paper. Hoeting et al. (1999: 399) suggested 
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that the issues that need to be further explored in the context of model selection and averaging 

include: robustness of the results on different prior information, performance of the methods if 

the ‘true model’ is not in the class M under study, fine-tuning of the ‘Occam’s window’ approach, 

as well as development of computational algorithms more efficient than the MCMC. 

In the field of applications of the presented methodology to forecasting international 

migration, the further work should concentrate on extending the model space M to cover a wider 

variety of models. Another option is the analysis of models containing additional socio-economic 

explanatory variables. Further, proper attention should be paid to the issue of disaggregating the 

forecasted origin-destination migration rates additionally by sex and age, in order to use them in 

the cohort-component or multiregional framework of population forecasting. Ideally, such 

disaggregation should be also made within a probabilistic framework consistent with the 

methodology used for forecasting the origin-destination emigration rates. In this context, a first 

attempt has been made by Congdon (2005), who presented Bayesian models for age schedules of 

migration using the Rogers-Castro double-exponential curve, and the non-parametric random-

effects approach.  

In my view, the Bayesian model selection and averaging techniques provide valuable tools 

for reducing uncertainty emerging from an important source – the model specification. The issue 

is especially important in the case of international migration, a phenomenon that can possibly be 

explained by many competing hypotheses and theories, leading to a wide variety of predictive 

models. In that respect, the presented approaches precisely address some of the suggestions 

made in the discussion on the methodological aspects of demographic forecasting, focusing on 

the analysis of uncertainty. Quoting one of the leading theorists of the Bayesian approach, D. V. 

Lindley (2000: 294), “statistics is essentially a study of uncertainty”, and the demographic 

applications are here by no means an exception. 
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Annex: WinBUGS code for the Bayesian model selection and averaging problems 

 
# Specification of the models 
 
# M[1]: m(t) = c[1] + e(t) 
# M[2]: m(t) = c[2] + m(t-1) + e(t) 
# M[3]: m(t) = c[3] + phi[3] m(t-1) + e(t); phi[3]<>0 & phi[3]<>1 
# M[4]: m(t) = c[4] + u(t) - theta[4] e(t-1) + e(t); theta[4]<>0 
# M[5]: m(t) = c[5] + phi[5] m(t-1) + e(t) - theta[5] u(t-1) + e(t); phi[5]<>0 & theta[5]<>0 
# Mav: m(t) = m(mod) [averaged model]  
 
model { 
 
# Priors for variables 
for (k in 1:5) { c[k] ~ dnorm(0,0.0001) } # constants 
phi[3] ~ dnorm (0.5,1); phi[5] ~ dnorm (0.5,1) # autoregression coefficients 
theta[4] ~ dnorm (0.5,1); theta[5] ~ dnorm (0.5,1) # moving average coefficients 
for (k in 1:5) { tau[k] ~ dgamma(0.5,0.5) } # precision for the random terms e(t) 
e[1,4] ~ dnorm(0,tau[4]); e[1,5] ~ dnorm(0,tau[5]) # artificial MA error terms for t=1 
 
# Priors for models 
mod ~ dcat(p[]) # categorical prior over the model space 
for (t in 1:5) { p[t] <- 1/5 } # uniform distribution 
# p[1] <- 0.30769; p[2] <- 0.30769; p[3] <- 0.15385; p[4] <- 0.15385; p[5] <- 0.07692  
# Occam's razor prior, to be used alternatively, instead of the uniform one 
 
# Definitions of data 
for (t in 1:n) { for (k in 1:5) { m[t,k] <- log(MR[t]) }  

mav[t] <- log(MR[t]) } 
 
# Estimation of the models' parameters 
for (t in 2:n) { mu[t,1] <- c[1]  
  mu[t,2] <- c[2] + m[t-1,2]  
  mu[t,3] <- c[3] + phi[3] * m[t-1,3]  
  mu[t,4] <- c[4] - theta[4] * e[t-1,4] 
  mu[t,5] <- c[5] + phi[5] * m[t-1,5] - theta[5] * e[t-1,5] 
  for (k in 1:5) { m[t,k] ~ dnorm(mu[t,k], tau[k]);  

m.new[t,k] ~ dnorm(mu[t,k], tau[k]) } 
  e[t,4] <- m[t,4]-mu[t,4] 
  e[t,5] <- m[t,5]-mu[t,5] 
  muav[t] <- mu[t,mod]; muav.new[t] <- m.new[t,mod] # averaged model 
  mav[t] ~ dnorm(muav[t], tau[mod]); mav.new[t] ~ dnorm(muav.new[t], tau[mod]) }  
  
# Forecasts for t = n+1 … N 
for (t in n+1:N) { mu.new[t,1] <- c[1] 
  mu.new[t,2] <- c[2] + m.new[t-1,2]  
  mu.new[t,3] <- c[3] + phi[3] * m.new[t-1,3] 
  mu.new[t,4] <- c[4] - theta[4] * e[t-1,4] 
  mu.new[t,5] <- c[5] + phi[5] * m.new[t-1,5] - theta[5] * e[t-1,5] 
  for (k in 1:5) { m.new[t,k] ~ dnorm(mu.new[t,k], tau[k]) } 
  e[t,4] <- m.new[t,4]-mu.new[t,4] 
  e[t,5] <- m.new[t,5]-mu.new[t,5] 
  muav.new[t] <- m.new[t,mod] # averaged forecast 
  mav.new[t] ~ dnorm(muav.new[t], tau[mod]) } 
} 
 
# Data sets  
 
# Data CH-DE 
list( n = 20, N = 26, MR = c(0.9442, 1.0071, 1.0237, 1.0424, 1.0874, 1.1061, 1.1804, 1.2833, 
1.2131, 1.0884, 1.1282, 1.1225, 1.0856, 1.0812, 1.0932, 1.1149, 1.1458, 1.1714, 1.1646, 
1.2346) ) 
 
# Data DE-CH 
list( n = 20, N = 26, MR = c(0.1156, 0.1213, 0.1290, 0.1246, 0.1295, 0.1266, 0.1036, 0.1060, 
0.1024, 0.1067, 0.1098, 0.1081, 0.1119, 0.1220, 0.1314, 0.1449, 0.1719, 0.1889, 0.1834, 
0.2208) ) 
 
# Data IT-DE 
list( n = 20, N = 26, MR = c(0.7412, 0.8701, 0.8481, 0.7867, 0.7598, 0.6996, 0.6761, 0.5775, 
0.6024, 0.7256, 0.8909, 0.8531, 0.7304, 0.6617, 0.6537, 0.6213, 0.5542, 0.4703, 0.4115, 
0.3682) ) 
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# Data DE-IT 
list( n = 20, N = 26, MR = c(0.8949, 0.7328, 0.6938, 0.6513, 0.6687, 0.5855, 0.4900, 0.4392, 
0.4131, 0.4294, 0.4481, 0.4810, 0.4968, 0.4859, 0.4673, 0.4465, 0.4384, 0.4429, 0.4096, 
0.4396) ) 
 
# Data PL-DE 
list( n = 14, N = 20, MR = c(3.7151, 3.6538, 2.1421, 2.3050, 2.6049, 2.3845, 2.2346, 2.1410, 
2.3537, 2.4580, 2.6273, 2.6409, 2.7464, 3.6478) ) 
 
# Data DE-PL 
list( n = 14, N = 20, MR = c(1.4752, 1.3900, 1.2912, 0.8635, 0.9428, 0.9631, 0.9638, 0.8608, 
0.8466, 0.8686, 0.9231, 0.9545, 1.0046, 1.2669) ) 
 
# Initial values 
 
list( mod = 1, c = c(0, 0, 0, 0, 0), phi = c(NA, NA, 0.5, NA, 0.5), tau = c(1, 1, 1, 1, 1), 
theta = c(NA, NA, NA, 0.5, 0.5) ) 

 
■ 


