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1 Introduction

In a previous paper, Russo et al. (2006), causality is considered in the framework of structural

models, i.e. statistical models characterized by parameters that are stable over a large class of

interventions or of environmental changes and that take into account background and contextual

knowledge. From this statistical viewpoint, causality is defined in terms of exogeneity in a structural

model. This approach allows us to attain a concept of causality that is internal or relative to the

structural model itself. Thus our knowledge of causal relations depends on structural models that

mediate epistemic access to causal relations.

In the social sciences, structural models correspond to causal structures that are much more

complex than simple causal relations such as X causes Y . Russo et al. (2006) mentions some prac-

tical difficulties such as covariate sufficiency, no confounding, etc. without developing a systematic

analysis of those issues. In the present paper we examine more thoroughly the concept of exogene-

ity and the problem of confounding and control. More specifically, we show that confounding due

to latent variables raises substantial problems for exogeneity. We start by examining the issue of

exogeneity in a conditional structural model and then proceed with the concept of confounding and

its impact on causal modelling. We conclude the paper with a brief discussion on how and when to

control for confounding.

Exogeneity has a long history in the foundations of statistical modelling. In econometrics, Hood

and Koopmans (1953) gathers a number of pionneering contributions from the Cowles Foundation,

Engle et al. (1983) and Florens and Mouchart (1985), among others, elaborate further these con-
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tributions. In spite of this long history no consensus on this concept seems to emerge. Spirtes et

al. (2000), for instance, gives three formal definitions in their monograph on causality and graph

models, the equivalence of which is not demonstrated. In the social sciences, a vast literature on

LISREL type models, or Covariance Structure Models, makes use of the concept of exogeneity, see

e.g. Bollen (1989, p.12): ”exogenous because its causes lie outside the model”, p.46: ”exogenous

... means that the variable is determined outside the model”. We shall argue that the concept of

exogeneity requires, as a prerequisite, a proper understanding of what a conditional model is about;

failing to make the meaning of ”determined outside the model” explicit hinders an adequate handling

of missing data and/or unobservable (or, latent) variables.

Confounding is not a new issue either. In philosophy, Reichenbach (1956) already developed the

concept of conjunctive fork where two or more effects have a common cause and where these effects

are conditionally independent given the common cause. The example of a drop in atmospheric

pressure causing both a storm and a barometer dip is well-known. Simpson’s paradox too is a classic

example of confounding (Rouanet 1985). The presence or absence of confounders is also a major

issue in epidemiology. If confounders are not taken into account, how can one infer true causal

relations and develop preventive or curative health policies? In demography, one knows since the

end of the 19th century that the differences in mortality between countries or provinces might be

due to their differential age structure only. In this case, the latter confounds the true geographical

mortality pattern. In all these cases, the recommended remedy is to control for the confounding

factor, e.g. the atmospheric pressure in the weather example or the age structure in the demographic

case. It is worth pointing out, following Pearl (2000) and Dawid (2002), that one should distinguish

between conditioning by observation or by intervention. The section on control will only consider the

conditioning approach on observational data, more suited to population studies where intervention

or manipulation is rarely possible. For the issue of conditioning by intervention and the use of

influence diagrams, see Dawid (2002).

2 Exogeneity and Confounding

2.1 Conditional Models

Originally, the concept of exogeneity appears with regression models. A first, and naive, approach

was to consider an exogenous variable as a non-random variable, the endogenous variable being the

only random one. That this approach was unsatisfactory became clear considering complex models

where the same variable could be exogenous in an equation and endogenous in another. A first

progress came through a proper recognition of the nature of a conditional model. Here, we present

a heuristic account of the basic concepts; for a more formal presentation, see e.g. Mouchart and

Oulhaj (2000) and Oulhaj and Mouchart (2003).
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Let us start with an (unconditional) parameterized statistical Model Mω
X given in the following

form:

Mω
X = {pX(x | ω) : ω ∈ Ω} (1)

where for each ω ∈ Ω, pX(x | ω) is a (sampling) probability density on an underlying sample

space corresponding to a (well-defined) random variable X and Ω is the parameter space, aimed

at describing the set of sampling distributions considered to be of interest. A conditional model is

constructed through embedding that concept into the usual concept of an unconditional statistical

model (1). For expository purposes, this paper only considers the case where a random vector X of

observations is decomposed into X ′ = (Y ′ , Z ′) (where ’ denotes transposition) and the model is

conditional on Z.

The basic idea of a conditional model is the following: starting from a global model Mω
X as

given in (1), each sampling density pX(x | ω) is first decomposed through a marginal-conditional

product:

pX(x | ω) = pZ(z | φ) pY |Z(y | z, θ) ω = (φ, θ) (2)

where pZ(z | φ) is the marginal density of Z, parametrized by φ, and pY |Z(y | z, θ) is the conditional

density of (Y | Z), parametrized by θ. Next, one makes specific assumptions on the conditional

component leaving virtually unspecified the marginal component. Thus a conditional model may be

represented as follows :

MZ , θ;Φ
Y = {pX(x | ω) = pZ(z | φ) pY |Z(y | z, θ) ω = (θ, φ) ∈ Ω = Θ× Φ } (3)

where Φ parametrizes a, typically large, family of sampling probabilities on Z only and for each

θ ∈ Θ, pY |Z(y | z, θ) represents a conditional density of (Y | Z). The essential features of a

conditional model are therefore:

1. θ indexes a well specified family of conditional distributions. This family constitutes the kernel

of the concept of a conditional model. The concept of conditional model relates, however, to a

family of joint distributions pX(x | ω) obtained by crossing the family of conditional densities

pY |Z(y | z, θ) with a family of marginal distributions pZ(z | φ).

2. φ is a nuisance parameter which is identified by definition (because Φ is a set of distributions

of Z). Furthermore θ and φ are variation free. The notation MZ , θ;Φ
Y conveys the idea that θ

is the only parameter of actual interest, leaving to φ no explicit role.

3. The modelling restrictions are concentrated on the conditional component, i.e. the set {PZ,θ
Y :

θ ∈ Θ} embodies the main hypotheses of the model, whereas in most cases, the set Φ em-

bodies a minimal amount of restrictions, typically only the hypotheses necessary to guarantee

essential properties for the inference on θ, such as identifiability or convergence of estimators.

3



Consequently, in most situations, but not in all, Φ represents a ”thick” subset of the set of

all probability distributions of Z. The role of Φ is to stress the random character of Z at the

same time as the vague specification of its data generating process; Φ may nevertheless play an

important role because its specification may determine desirable properties of the estimators

of θ, the parameter of interest. (Oulhaj and Mouchart(2003) provides more information on

the very nature of conditional models)

2.2 Exogeneity and conditional model

Suppose we analyze data X = (Y, Z). A challenging issue is to decide whether it is admissible, in

the sense of losing no relevant information, to only specify a conditional model MZ , θ;Φ
Y rather than

specifying the model Mω
X . This is the issue of exogeneity.

The motivation for specifying a conditional model rather than a model on the complete data

X is parsimony: some specifications on the marginal process may not be avoided for ensuring

suitable properties of the inference on the parameters of the conditonal process but by specifying

less stringently the marginal process, generating Z, one looks for protection against specification

error. The cost could however be substantial if the marginal process contains relevant information.

Formally, the condition of exogeneity is therefore: the parameter of interest should only depend

on the parameters identified by the conditional model and the parameters identified by the marginal

process should be ”independent” of the parameters identified by the conditional process. Here,

”independence” means ”variation-free” in a sampling theory framework or independent in the (prior)

probability in a Bayesian framework. It should be stressed that the independence among parameters

has no bearing on a (sampling) independence among the corresponding variables.

More specifically, let us consider the following marginal-conditional decomposition:

pX(x | ω) = pZ(z | θZ) pY |Z(y | z, θY |Z) (4)

where θZ , resp. θY |Z , represents the parameter identified by the marginal , resp. conditional,

process. The condition of independence, namely:

(θZ , θY |Z) ∈ ΘZ ×ΘY |Z or θZ⊥⊥θY |Z (5)

is a condition of (Bayesian) cut (see Barndorff-Nielsen ( 1978) in a sampling theory framework and

Florens et al. (1990) in a Bayesian framework), and is deemed to allow for a separation between

the inference on the parameters of the marginal process and the inference on the parameters of the

conditional process. More explicitly, condition (5) implies that any inference on θZ , resp. θY |Z , be

based only on the marginal, resp. conditional, model characterized by the marginal distributions

pZ(z | θZ) , resp. conditional distributions pY |Z(y | z, θY |Z).

This condition along with the condition that the parameter of interest, say λ, depends only on

the parameters identified by the conditional process , i.e. λ = f(θY |Z) , formalizes the concept of
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”losing no relevant information” when basing the inference on the conditional model rather than

on the complete model, characterized the distributions pX(x | ω). In this setting, the concept of

exogeneity appears as a binary relation between a function of the data, namely Z, and a function

of the parameters, namely λ. Thus, Florens et al. (1990) suggests the expression ”Z and λ are

mutually exogenous” (or Z is exogenous for λ), to stress the idea that a variable is not exogenous by

itself but is exogenous in a particular inference problem. Treating Z as exogenous means therefore

that the (marginal) process generating Z is minimally specified (and may be heuristically qualified

as ”left unspecified”) and that the inference on the parameter of interest, although based on the

joint distribution of all the variables in X, is nevertheless invariant with respect to any specific choice

of the marginal distribution of Z.

Summarizing: exogeneity is the condition that makes admissible the use of the conditional model

MZ,θ,Φ
Y as a reduction of the complete model Mω

X; furthermore, exogeneity is a property at the level

of a conditional model rather than at the level of a particular variable.

The consequences of a failure of exogeneity may be twofold. There may be a loss of efficiency in

the inference if the failure comes from a restriction (equality or inequality), or a lack of independence

in a Bayesian framework, between the parameters of the marginal model and those of the conditional

model. There may be also an impossibility of finding an unbiased or a consistent estimator if the

parameter of interest is not a function of θY |Z only. A typical example, well known in the field of

simultaneous equations in econometrics, is that the parameter of interest in a structural equation

may not be a function of the parameters identified by the conditional model corresponding to the

equation.

2.3 Exogeneity and Causality

In general, the specification of a parameter of interest is a contextual rather than a statistical issue.

A most usual rationale for specifying the parameter of interest is based on the notion of a structural

model. Following Russo et al. (2005), this is a model deemed to represent an underlying structure

of a data generating process. More explicitly, apart from adequately fitting the data, a structural

model should also be invariant under a large class of changes of the environment (or, of interventions)

and should, at the same time, be in agreement with the knowledge of the field from which the data

are extracted. In other words, such a model should be structurally stable and reflect the scientific

knowledge of the field.

In this framework, Russo et al. (2005) approaches causality as exogeneity in a structural condi-

tional model. In the very simple case of two variables Y and Z, this concept may be paraphrased

as follows: ”if the conditional distribution of Y given Z is structurally stable and reflects a good

scientific knowledge of the field, there is no reason not to consider that Z causes Y ”. This approach

might be considered an empirical one, as long as the observations providing the ground for a causal
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interpretation are not only the data under immediate scrutiny but also the whole body of obser-

vations underlying the ”field knowledge” and leading accordingly to the present state of scientific

knowledge. In this sense, causal attribution ”Z causes Y” is an issue of statistical modelling, namely

this is the question whether the conditional model characterized by pY |Z(y | z, θY |Z) is actually

structural.

3 Confounders and Confounding

In a recent paper on trends in cardiovascular diseases (CVD) in Europe, Kesteloot et al. (2006),

the authors attribute the impressive current decline in mortality in the Baltic States to a change in

dietary habits, i.e. the greater consumption of vegetable oil for cooking and the progressive replace-

ment of butter by low-fat margarine. Though nutrition does indeed play a significant role on the

incidence of CVD, one may also postulate, Gaumé and Wunsch (2003), that, in the case of the Baltic

States, the dramatic change from a communist regime to a liberal one has led to systemic repercus-

sions in the whole society which have brought about both modifications in cardiovascular mortality

(through major fluctuations in stressful events), in economic conditions, and in behaviours including

nutrition. Societal transformations and contextual changes in the economic, social (including public

health), and political spheres would therefore be a confounder masking the true relation between

changes in mortality patterns and in nutritional ones. To put it simply, correlation of time series

does not imply causation.

To take another example that will be discussed later in this paper, medical reports in the 1920s

already pointed out the suspected links between tobacco and cancers, and a 1938 article in the

journal Science suggested that heavy smokers had a shorter life expectancy than nonsmokers. In

1939, F.H. Müller also published a paper in German on the relationship between smoking and lung

cancer, see Bartecchi et al. (1995) and Freedman (1999). Though one now knows that smoking is

bad for one’s health, actually it is only since the early 1950s that a series of studies had established

the fact, Vallin et al. (2006), and even then the relationship between lung cancer and cigarette

smoking was hotly disputed by R.A. Fisher who also argued that correlation is not causation. When

is a correlation causal and when is it the result of confounding? This is the issue tackled here, by

recalling some well-known and lesser-known facts.

In the following, we will use, as a visual aid, causal directed graphs where nodes represent

variables and directed edges (single-headed arrows) represent the possible impact of the variable at

the base of the edge on the variable at the head of the edge. Here, ”impact” refers to a conditioning

variable in a structural conditional model.

In epidemiology and in demography, when one examines the impact of a treatment or exposure

on a response or outcome, a confounding variable - or confounder - is often defined as a variable
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associated both with the putative cause and with its effect, see e.g. Jenicek and Cléroux (1982),

Elwood (1988). Sometimes the definition is more precise, such as in Anderson et al. (1980) or in

Leridon and Toulemon (1997). According to these authors, a variable or background factor is a

confounder whenever two conditions simultaneously hold:

1. The risk groups differ on this variable;

2. the variable itself influences the outcome.

Some authors gloss condition 1 adding that the background factor should not be a consequence of

the putative cause, Schlesselman (1982).

For instance, if we examine the impact of cigarette smoking on the incidence of cancer of the

respiratory system, a variable such as exposure to asbestos dust confounds the relation between

smoking and this type of cancer. Exposure to asbestos dust and smoking are associated, i.e. there

are proportionally more persons exposed to asbestos in the smoking group than in the non-smoking

group. Condition 1 is therefore satisfied. In addition, inhaling asbestos dust is a strong cause of

cancer of the pleura; condition 2 is thus also satisfied. Cancer is the outcome variable in this example,

smoking a potential cause, and exposure to asbestos a confounder. Vice-versa if one were to examine

the impact of asbestos exposure on the incidence of cancer of the respiratory system, smoking this

time would be the confounding factor, as it is associated with asbestos exposure and is a cause of

lung cancer. This simplified example is developed in Russo et al. (2006); a real study would also

consider other causal factors and paths, and the interaction (or effect modification) between smoking

and asbestos exposure.

Condition 1 needs to be clarified however. Why are smoking and asbestos exposure associated?

Reichenbach (1956) was one of the first, if not the first, in philosophy to point out that simultaneous

correlated events must have a prior common cause: ”If improbable coincidence has occurred, there

must exist a common cause” (p.157). At around the same time, statisticians were also aware that

a correlation between two variables could be due to a common cause. Considering once again the

correlation between smoking and lung cancer, suppose that one’s unknown genotype (G) would

influence both smoking behaviour or tabagism (T ) and the susceptibility to lung cancer (C). This

explanation was proposed by the statistician R.A. Fisher when he was scientific consultant to the

Tobacco Manufacturers’ Standing Committee in the late 1950s (Fisher 1957). In this case ”without

any direct causation being involved, both characteristics might be largely influenced by a common

cause, in this case the individual genotype”, Fisher (1958). The corresponding causal graph would

be as in Fig. 1 with possibly no causal link at all between T and C.

Fisher’s suggestion was ultimately rejected but it did show that proving the relation between lung

cancer and cigarette smoking required not only sound epidemiological evidence, but also replication

in different studies, experimental evidence from animal studies, and a plausible biological mechanism
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Figure 1: Genotype, smoking and tabagism

linking smoking to lung cancer. This is precisely what we mean by structural modeling.

Coming back to the question ’why are smoking and asbestos exposure associated?’, one knows in

demography and in epidemiology that both smoking and asbestos exposure are dependent upon one’s

socio-economic status (SES): those with a lower SES tend more to smoke and work in unhealthy

environments than those with a higher SES. The causal graph can therefore be drawn as in Fig. 2,

where A represents exposure to asbestos, T tabagism, and C cancer incidence. Notice that Fig. 2

incorporates two assumptions, namely: A⊥⊥T | SES and C⊥⊥SES | A, T .

A

SES C

T

@
@@R�

���

@
@@R �

���

Figure 2: Socio-economic status, smoking, absbestos exposure and cancer of the respiratory system

This graph shows that tabagism and asbestos exposure are in fact not independent from one

another as they are both related to one’s SES, i.e. they have a common cause. Note that SES is

also a common cause of T and C as it has an impact on cancer through the intervening or intermediate

variable A. However an association between two variables such as smoking and asbestos exposure

could also be due to a causal relation between them. A could be a cause of T or vice-versa. The

two corresponding causal graphs are given in Fig. 3 and 4 respectively.

A

T C

@@R���
-

Figure 3: The relation between T and C, A being an intervening variable

This distinction leads to a more precise definition of a confounder: a confounding variable or

confounder is a variable which is a common cause of both the putative cause and its outcome, Bollen

(1989), Pearl (2000). In graphic representations, a common cause is a common ancestor to both
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Figure 4: The relation between T and C, A being a common cause

putative cause and effect. For example, A is a confounder in Fig. 4 because in this model it is a

common cause of both T and C. For the same reason, SES is a confounder in Fig. 2, as it is a

common cause of both T and C (the latter via A). In Fig. 3, A is not a common cause of T and C;

A is therefore not a confounder. The confounder can be either latent (i.e. unobserved) or observed:

this aspect is developed in Section 5. From the point of view of controlling for the confounder, the

two cases are obviously quite different, see Cox and Wermuth (2004). This definition avoids taking

an intervening (intermediate) variable between the putative cause and the outcome such as in Fig.

3 as a confounder, even though it is associated with the putative cause (as the latter has a causal

influence on the former) and it has an impact on the outcome. Many definitions given in epidemiology

textbooks are not adequate in this respect. As one can presume, the possible confounder should not

be affected by treatment/exposure, Schlesselman (1982). Finally, using the so-called d-separation

or d-connection criteria, it is possible in causal graphs to check for confounding, see Pearl (2000),

Robins (2001).

4 Reichenbach on screening-off

4.1 What did Reichenbach really said?

The history of the concept of screening-off traces back to Hans Reichenbach, who first coined the

term. But what was Reichenbach talking about? What did he use ”screen-off” for? Screening-off

and common cause often go pari passu, but we’d better go back reading Reichenbach because this

is not exactly the case. To begin with, Reichenbach develops his probabilistic theory of causality

as part of his causal theory of time. Causes do not precede effect by definition, on the contrary,

Reichenbach aims to develop a theory of causal relations implying causal asymmetry, which in turn

will be used to define the relation of temporal priority of the causes and thus the direction of time and

time ordering of events. In Chapter IV, Reichenbach extends the discussion to macrostatistics, that

is ”to processes the elementary ’particles’ of which are macroscopic objects (such as grains of sand

or playing cards) and the elementary arrangements of which are not microstates but macrostates”

(Reichenbach 1959, p. 145). Applications of marcrostatistics in this chapter and the resulting

principle of common cause (PCC) in §19 will eventually lead to the definition of the time direction.

Let us turn the attention to PCC. The problem to be solved is explaining improbable coinci-
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dences or correlations. The improbable, according to Reichenbach, has to be explained in terms of

causes, not in terms of effects (1956, §19). Thus the Principle of Common Cause: If an improbable

coincidence has occurred, the must exist a common cause (Reichenbach 1956, p.157). More precisely,

fortuitous coincidences are not impossible and the existence of a common cause is not certain either,

but only probable. However, as long as those coincidences occur, the probability of the existence of a

common cause raises. On top of that, we have an implicit rule that prescribes explaining improbable

occurrences in terms of causes and not in terms of effects (see §18).

Reichenbach treats the principle of common cause as a statistical problem. Assume that events A

and B have been observed to occur frequently. Thus, with reference with a certain time scale, we can

talk about the probabilities P (A), P (B) and P (A,B). Consider now the following macrostatistical

arrangement:

E

A B

C

��* HHY

HHY ��*

Figure 5: Macrostatistical arrangement

Fig.(5) is a double-fork arrangement in which A and B represent the two events the simultaneous

occurrence of which is improbable, C is their common cause and E the common effect. The simul-

taneous occurrence of A and B is explained by C and not by E (Reichenbach argues in favour of a

causal explanation rather than a final explanation in §18, see the example of the footprint traces in

the sand). Because we are interested in explaining improbable occurrences in terms of causes and

not in terms of effect, let us consider, in Fig. 6, only the lower part of the diagram in Fig. 5.

A B

C
HHY ��*

Figure 6: Conjunctive fork

Let us now examine the statistical relations holding for a single fork as in Fig.6. The simultaneous

occurrence of A and B is more frequent than can be expected for chance coincidences:

P (A,B) > P (A) · P (B) (6)

Applying the multiplication theorem of probabilities to the left side we obtain:

P (A,B) = P (A) · P (A|B) = P (B) · P (B|A) (7)
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From (6), the two relations can be derived:

P (A|B) > P (B) (8)

P (B|A) > P (A) (9)

Each of these relations, vice versa, can be used to derive (6). Therefore, (8) or (9) is equivalent to

(6).

Let us now see how the common cause is statistically characterized. Reichenbach assumes that

the fork ABC satisfies the following relations:

P (C|A,B) = P (C|A) · P (C|B) (10)

P (C|A,B) = P (C|A) · P (C|B) (11)

P (C|A) > P (C|A) (12)

P (C|B) > P (C|B) (13)

It can be shown that (6) is also derivable from these relations, therefore relations (10)-(13) define

the conjunctive fork. The conjunctive fork, as Reichenbach says, is the statistical model for the

principle of common cause. The rest of the paragraph is devoted to the statistical characterization

of the conjunctive fork in order to define the direction of time in macrostatistics. Thus we now have

the direction of time, that is the direction of time is the same as the direction of the causal relation.

How about time ordering of events? That is, what is the time ordering of causes and effects?

Let us read §22. Macrostatistics, says Reichenbach, can be even used to define time order. The

statistical relations mentioned above can replace the use of classical mechanics for the construction

of a causal net which possesses a lineal order. We assume that events are observed as separate

spatiotemporal units. To construct a causal net for events just in terms of statistical relations,

events have to be classified into classes. To construct a causal net, two requirements are in order:

(i) classes are codefined (a class A is codefined if it is possible to classify an event x as belonging to

A coincidently with the occurrence of x); (ii) classes have a non 0 probability.

Now suppose we have three events x, y, z. This triplets of events occurs repeatedly and we

wish to establish the causal ordering within each triplet. First, suppose we find out that x, y, z

belong respectively to the classes A, B, C. To construct a causal net we need the relation of causally

between. If we previously found out that that B is causally between A and C, then we say that y is

causally between x and z. Assume we have a causal chain as in figure (7) If we know that x belongs

to A, then we can predict with probability P (B|A) that y will belong to B. Likewise, we can predict

that C will occur from B. And here comes the awaited screening-off relation. Once we know that

B occurred, A is no longer relevant for predicting C. As Reichenbach says, ”the contribution of A
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A B C- -

Figure 7: A causal chain composed of three events

to C has been absorbed in B, so to speak; and B may be said to screen off A from C”. (1956, P.

189, my notation, emphasis in the original).

The relation causally between is defined through the following statistical relations:

1 > P (B|C) < P (A|C) > P (C) > 0 (14)

1 > P (B|A) > P (C|A) > P (A) > 0 (15)

P (A,B|C) > P (B|C) (16)

And we symbolize this relation with btw(A,B, C). It is worth noting that the relation causally

between is symmetrical - i.e. given a three events arrangement, the two arrangements ABC and

CBA are equivalment, but unique - i.e. given a three events arrangement, only one event will be

causally between the other two (see Reichenbach 1956, §22 for details and proof). This means that

because it is symmetrical causally between can’t alone give us the time ordering yet, but because it

is unique, we can use it for constructing the causal net.

For instance, suppose the following relations have been verified:

btw(A,B, C), btw(A,B,D), btw(D,B,C), (17)

then we can conclude that the corresponding arragements is given as in figure (9) and not as in

figure (8).

A B C D- - -

Figure 8: A four events arrangement

C

A B

D

-
�

��3

Q
QQs

Figure 9: A four event arrangement probabilistically equivalent
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However, Reichenbach is aware of the following difficulty: in the conjunctive fork the common

cause as well as the common effect C can screen off A from B. In other words, the two arrangements

in Fig. 10 and Fig. 11 are indistinguishable.

A B

C
HHY ��*

Figure 10: Conjunctive fork: C is a common cause

A B

C
HHj ���

Figure 11: Conjunctive fork: C is a common effect

A couple of thoughts. As far as we consider relations among variables in a structural model

comparable to macrostatistical processes, Reichenbach’s reasoning about the conjunctive fork and

screening off can be fruitfully applied in the social sciences. It is worth noting that, in the ultimate

analysis, Reichenbach’s screening-off relation has not a causal scope but rather temporal scope.

Differently put, it is not a relation describing the ”true” causal relations or what happens in the

case of a third variable confounding the real causal effect, but it is just a temporal statistical relation

to predict a further variable from temporally precendent ones. That is to say, from the fact that C

screens off A from B in a conjunctive fork, it does not directly follow that we have to control for C.

4.2 Screening-off and control

The philosophical literature on causality and causal modelling makes extensive use of the term

”screening-off”, but no real conceptualization of it is put forward. ”Screening-off” is generally used

to show practical difficulties that causal modelling faces or the inadequacy of simple probabilistic

characterization of the causal relations.

For instance, Suppes (1970) uses the screening-off relation for defining the genuine cause (a

prima facie cause that is not spurious). In the second chapter Suppes presents a formal probabilistic

theory of causal relations among events. Events are subsets of a fixed probability space, they

are instantaneous and their times of occurrence are included in the formal characterization of the

probability space (Suppes 1970, p. 12). It is worth noting that Suppes didn’t mean the formal

theory presented in chapter 2 to be the end of the story. As he says in the opening of chapter 2,

he is rather formalizing the wide use of probabilistic causal concepts in ordinary talk. A sencond

step will be to examine some systematic applications of the theory to various branches of science.
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It seems to us that it is on this ground that Suppes’ theory has to be evaluated. But let us first see

how in his formal theory the ”screening-off” relation is used.

A prima facie cause C is an event that, by definition, precedes the effect E in time and such

that P (E|C) > P (E) (assuming that P (C) is non 0). Formally, the event Ct′ is a prima facie cause

of Et if, and only if:

1. t
′
> t

2. P (Ct′ > 0)

3. P (Et|Ct′ > P (Et)

Of course, Suppes is aware of the fact that an earlier event, say F , may be found which accounts

as well for the conditional probability of the effect. In this case C is a spurious cause. Let Ct′ be

a prima facie cause; then, Ct′ is a spurious cause if and only if there is a t
′′

< t
′

and an event Ft′′

such that:

P (Ct′ , Ft′′ ) > 0 (18)

P (Et|Ct′ , Ft′′ ) = P (Et|Ft′′ ) (19)

P (Et|Ct′ , Ft′′ ) ≥ P (Et|Ct′ ) (20)

Suppes doesn’t use graphical representation but supposedly the case of the spurious cause would

appear as follows. Ct′ being a prima facie cause of Et is represented by the graph in Fig (12). The

Ct′ Et
-

Figure 12: Prima facie cause

presence of an earlier event Ft′′ that screens-off Ct′ from Et can be represented as in Fig.(13), where

the dashed arrow [it should be dashed!!] between Ct′ and Et indicates that the relation is now

spurious.

Ct′ Et

Ft′′

-

�
��3

Figure 13: Spurious cause

Suppes is not particularly sure about condition (19) above, which he might want to replace with

the inequality P (Et|Ct′ , Ft′′ ) ≤ P (Et|Ct′ ) (Suppes 1970, p. 23). Equation (19) is formally equivalent
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to Reichenbach’s screening-off relation. However, whilst for Reichenbach, the screening-off relation

has primarily a temporal meaning, i.e. it is used for the prediction of a future event, in Suppes’

definition it has a truly causal significance. Together, conditions (19) and (20) suggest that the

event genuinely responsible for the occurrence of the effect E is F and not C.

Cartwright (1979) points out that statistical analyses of causation such as Suppes’ have failed

because they can’t deal properly with cases of Simpson’s Paradox, i.e. in cases in which associations

between two variables which hold in a given population can be reversed in the subpopulation by

finding a third variable which is correlated with both. What Cartwright is actually criticizing is that

the probability raising requirement is just too simplistic. ”A cause - says Cartwright - must increase

the probability of its effects-but only in situations where such correlations are absent” (Cartwright

1979, p. 423). Consequently, she advances the following definition:

C causes E if and only if C increases the probability of E in every situation which is

otherwise homogenous with respect to E.

This can be the case if all other factors in the population are held fixed, i.e. if we control for every

possible confounding factor.

Irzik (1986) probably gives the most accurate discussion of screening-off. In this paper he claims

an equivalence between the philosophical notions of statistical relevance and screening-off and the

notions of correlation coefficient and zero-partial correlation coefficient used in causal modelling.

Statistical relevance (i.e. P (E|C) 6= P (E)) is equivalent to a non-zero correlation in the case of

dichotomous variables; the vanishing of (first-order) partial correlation coefficient (ρX,Y |Z = 0) con-

veys the same idea of screening-off, i.e. the correlation between X and Y disappears when controlled

for Z. Irzik argues against Ellett and Ericson (1983), who defends the following reductionist rule in

causal modelling.

Rule: If the correlation rXZ between X and Z is high positive (or negative) and the

partial correlation coefficient rXz|Y between X and Z with Y ”held constant” is zero,

either (a) Y is an intervening variable - the causal effect of X on Z (or vice versa)

operates through Y ; or (b) Y is a common cause of X and Z - the correlation between

X and Z is spurious.

In other words, rXZ|Y is sufficient to infer:

X Y Z- -

Figure 14: Simple recursive system (a)

or
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X Y Z� �

Figure 15: Simple recursive system (b)

or

X

Y

Z

��*

HHj

Figure 16: Simple recursive system (c)

However, as Irzik points out, Sewall Wright, as early as 1934 has shown that the following

structure is note ruled out:

X

Y

Z

���

HHY

Figure 17: Simple recursive system (d)

Differently put, a zero-partial correlation does not allow us to distinguish Y as an intervening

variable or as a common cause or as a common effect. Consequently, in line with Wright, Duncan

and Blau, Irzik argues in favour of the non-reductionist character of causal modelling. In general,

screening-off arguments are meant to defend a non reductionist position from statistics to causality.

This is also the position held in Russo et al. (2006), where they point out that structural stability

alone does not guarantee the causal interpretation of a structural conditional model. Well-founded

field (or background) knowledge is indeed an essential element.

5 Heterogeneity, Latent exogenous variables, Frailty, Con-

founding variables and loss of exogeneity

We now examine some reasons possibly explaining why causal analysis may not be an easy task in

current statistical modelling. We begin by considering a three-variates case and next extend the

analysis to a p-dimensional vector. We first introduce a completely recursive decomposition and

later consider more complex structures, in particular those arising from incomplete observability of
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the relevant variables.

Thus, consider that, for data in the form X = (Y,Z, U) , the components of X have been so

ordered that in the complete marginal-conditional decomposition :

pX(x | ω) = pY |Z,U (y | z, u, θY |Z,U ) pZ|U (z | u, θZ|U ) pU (u | θU ) (21)

each of the three components of the rhs may be considered as structural models with mutually

independent parameters, i.e. in a sampling theory framework:

ω = (θY |Z,U , θZ|U , θU ) ∈ ΘY |Z,U ×ΘZ|U ×ΘU (22)

In such a case, (21) defines a completely recursive system and may be represented by Figure 18. This

diagram suggests that U causes Z and (U,Z) cause Y . Also, equations (21) and (22) say that U is

exogenous for θZ|U and that (U,Z) are jointly exogenous for θY |Z,U

U Z

Y

-

@
@R

�
�	

Figure 18: 3-component completely recursive system

Now suppose that Y⊥⊥U | Z. In such a case, the structure (21) becomes:

pX(x | ω) = pY |Z(y | z, θY |Z) pZ|U (z | u, θZ|U ) pU (u | θU ) (23)

Here, Z (alone) is exogenous for θY |Z = θY |Z,U . Figure 18 becomes Figure 19 and now U causes

Z and Z causes Y ; thus Z is ”‘endogenous”’ in pZ|U and exogenous in pY |Z . Furthermore, if the

process generating U were modified, or put under control, its effect of Y would be intermediated

through Z; thus, for the effect on Y , Z may be regarded as a ”sufficient summary” of U and Z.

U Z Y- -

Figure 19: 3-component completely recursive system with conditional independence

Now suppose that U is not observable. It may be tempting to collapse the diagram in Figure 18

into that of Figure 20. Formally, Figure 20 may be obtained by integrating the latent variable U

out of (21):

pY |Z(y | z, θY |Z) =

∫
pY |Z,U (y | z, u, θY |Z,U ) pZ|U (z | u, θZ|U ) pU (u | θU ) du∫ ∫
pY |Z,U (y | z, u, θY |Z,U ) pZ|U (z | u, θZ|U ) pU (u | θU ) du dy

(24)

pZ(z | θZ) =
∫

pZ|U (z | u, θZ|U ) pU (u | θU ) du (25)
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Z Y-

Figure 20: 2-component system

Therefore:

θY |Z = f1(θY |Z,U , θZ|U , θU ) θZ = f2(θZ|U , θU ) (26)

Many social scientists would call this situation a case of ”confounding variable” (some scientists

would even call it ”the”’ case), namely that U is a confounding variable or a common cause (of Y

and Z). Statisticians would call it ”a case of mixture models” or an issue on ”missing data” or

(unobservable) heterogeneity, or frailty model or ... and philosophers would probably call it ”an

interesting case”... All in all, this situation calls for several remarks:

• In general, Z is not exogenous anymore because (26) shows that the parameter θY |Z and θZ

are, in general, not independent; indeed some components of θZ|U and of θU may be common

to θY |Z and θZ (see however next remark);

• the non-observability of U typically implies a loss of identification: the functions f1 and f2

are not one-to-one; thus Z might still be exogenous because potentially common parameters

in θY |Z and θZ might not be identified;

• One might also look for further conditions providing the exogeneity of Z.

A frequently used simplifying assumption is the sampling independence between Z and U :

Z⊥⊥U | ω (27)

This assumption implies that θZ|U is now written as θZ and Figure 18 becomes Figure 21 suggesting

that U and Z jointly cause Y (without U causing Z).

U Z

Y

@
@R

�
�	

Figure 21: 3-component completely recursive system with marginal independence

When U is not observable, Figure 20 is again obtained under the following integration of U :

pY |Z(y | z, θY |Z) =
∫

pY |Z,U (y | z, u, θY |Z,U ) pU (u | θU ) du (28)

Therefore:

θY |Z = f3(θY |Z,U , θU ) (29)
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independently of θZ and the exogeneity between Z and θY |Z may be recovered; in particular, U is

not anymore a common cause (of Y and Z) but, from (29), it is seen that the meaning of θY |Z is to

be a combination of the causal action of U along with that of Z, represented by θY |Z,U , and of the

distribution of U , represented by θU .

Let us now see why the graphs represented in Figures 18 to 21 may be inappropriate to un-

derstand causal attribution. Firstly, causality is adequately represented in Figures 18, 19 and 21

once they represent structural models but in such cases Figure 20 is inappropriate for picturing

causality because the underlying model represents solely a statistical model in terms of the manifest

variables only. Secondly, Figure 20 is not appropriate to represent exogeneity of Z which is false in

general but possible under the supplementary assumption (27). Last but not least, Figure 20 is not

sufficient to interpret the statistical model, i.e. to understand the meaning of θY |Z , the parameter

of pY |Z(y | z, θY |Z), and eventually to understand the effect of Z on Y ; indeed these interpretations

should be based on an explicitation of the functions f1, f2 and f3.

An example may be useful to better grasp some difficulties. Suppose, for simplifying the argu-

ment, that the joint distribution of X in (21) is multivariate normal; thus the regression functions

are linear and the conditional variances are homoscedastic, i.e. do not depend on the value of the

conditioning variables. Let us compare the following two regression functions:

IE [Y | Z,U, θY |Z,U ] = α0 + Zα1 + Uα2 (30)

α1 = [cov(Y, Z | U)][V (Z | U)]−1

= [cov(Y, Z) − cov(Y,U)[V (U)]−1cov(U,Z)]

×[V (Z) − cov(Z,U)[V (U)]−1cov(U,Z)]−1 (31)

IE [Y | Z, θY |Z ] = β0 + Zβ1 β1 = [cov(Y,Z)][V (Z)]−1 (32)

Therefore, if the effect on Y of the cause Z is measured by the regression coefficient, the correct

measure would be α1 rather than β1, once the conditional model generating (Y | Z,U) is structural.

Note that, in this particular case, α1 = β1 when Z⊥⊥U but this is a particular feature of the normal

distribution for which Z⊥⊥U implies that cov(Y, Z | U) = cov(Y, Z) and cov(Y, U | Z) = cov(Y, U)

which is in general not true. Moreover, α1 = β1 is also true when α2 = 0, i.e. when Y⊥⊥U | Z

which is contextually different from Z⊥⊥U .

This example makes several issues explicit:

(i) measuring the effect of a cause should be operated relatively to a completely specified

structural model; failing to properly recognize this issue may lead to fallacious conclusions

because in general: α1 6= β1
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(ii) apparently ancillary specification, such as a normality assumption, may be more restrictive

than first thought; for instance, under a normality assumption, the hypotheses U⊥⊥Z and

Y⊥⊥U | Z implies each that α1 = β1 although they are contextually different, once the

normality assumption is not retained. This is so because, in the normal case, independence is

equivalent to uncorrelatedness and the regression functions are linear.

In the previous analysis, Y and Z may be indifferently random variables (i.e. univariate) or ran-

dom vectors. Let us now consider a decomposition of X into p components: X = (X1, X2, · · ·Xp).

Suppose that the components of X have been so ordered that in the complete marginal-conditional

decomposition :

pX(x | ω) = pXp|X1,X2,···Xp−1(xp | x1, x2, · · ·xp−1, θp|1,···p−1)

· pXp−1|X1,X2,···Xp−2(xp−1 | x1, x2, · · ·xp−2, θp−1|1,···p−2) · · · pX1(x1 | θ1) (33)

each components of the rhs may be considered as structural models with mutually independent

parameters, i.e. (in a sampling theory framework):

ω = (θp|1,···p−1, θp−1|1,···p−2 · · · , θ1) ∈ Θp|1,···p−1)×Θp−1|1,···p−2 · · · ×Θ1 (34)

The representation of (33) through the chain (35):

X1 → X2 → · · · → Xi · · · → Xp (35)

might be viewed as a simplified representation of a completely recursive system where, for instance,

the first two arrows would actually stand for Figure 22. The first three arrows would be represented

as in Figure 23 and so on.

X1 X2

X3

-

@
@R

�
�	

Figure 22: First 3 components of a completely recursive system

X1 X2

X3 X4

-
H

HHH
HHHj?

�
���

���� ?
-

Figure 23: First 4 components of a completely recursive system
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This is however a dangerous road. Once the value of p increases such graph representations

become quickly unmanageable unless some simplifying assumptions, in the form of conditional in-

dependences, operate simplifications of the same nature as Figure 21 simplifies Figure 18. This is

indeed a basic issue in structural modelling: the use of field knowledge aims not only at ordering

the components of X, so as to obtain (33), but also at bringing in more structure than the complete

system (33). The simple 3-variable case has however suggested how complex may be to assess the

role of further assumptions.

More specifically, the statistical modelling of a complex systems raises several issues:

1. Given a p-dimensional vector of variables to be modelled, is the field knowledge sufficient for

ordering the variables in such a way that one may obtain a completely recursive system as in

(33), i.e. in such a way that each component Xj is univariate ? As a matter of fact, if often

happens, in particular in econometrics, that it is not possible to disentangle recursively the

process generating a vector of variables, in other words that some components Xj are sub-

vectors of X rather than univariate random variables. For instance, Mouchart and Vandresse

(2005) handles a case where the data are made of vectors the components of which are price

and attribute of a set a contracts concluded through a bargaining process: the data and the

contextual information do not allow to know whether the prices have been bargained after or

before the attributes have been agreed upon. This is a case of simultaneity where the model

describes a process generating a vector of (so-called ”endogenous” ) variables conditionally

on a vector of exogenous variables, in such a way that the equations of the model do not

correspond to a marginal-conditional decomposition. The econometric literature, particularly

between the sixties and the eighties, is extremally rich in developing this class of models, called

”simultaneous equations models”.

2. Endowing each distribution of (33) with a structural interpretation amounts to say that each of

these distributions represents a contextually relevant data generating process. The principle

of parsimony recommends to focus the attention on the processes of actual interest and is

made operational by selecting a subvector (Xr+s, Xr+s−1, · · · , Xr) of X such that the joint

distribution of (Xr+s, Xr+s−1, · · · , Xr | X1, · · ·Xr−1) gathers all data generating processes of

actual interest. In such a case the subvector (X1, · · ·Xr−1) becomes globally exogenous for the

system of interest.

3. Quite a difficult issue in structural modelling is bound to the fact that many theories, in social

sciences, involve latent, or nonobservable, variables introduced in order to help structuring a

theoretical construct; think, for instance, to the concept of ”intelligence” in psychology, of ”so-

cial easiness” in sociology or of ”permanent income” in economy. In such a case, a structural
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model is built including latent and manifest, or ”observable”, from which a statistical model

is obtained by integrating out all the latent variables. A typical benefit of such an approach

is to obtain a statistical model with more structure, i.e. more restrictions, than a ”saturated”

statistical model constructed independently of a structural approach. A well-known case is

provided by the LISREL type model, or covariance structure model. However that struc-

tural approach has also a cost, sometimes difficult to handle. Indeed, the analysis performed

around the simplest case of one unobservable variable along with two observable variables,

given through equation (24) and (25) suggests that the analysis of exogeneity at the level of

the statistical model bearing on the manifest variables only becomes soon untractable, jeop-

ardizing most exogeneity properties and making difficult the interpretation of the identifiable

parameters.

6 Control

6.1 Ex ante at the Data Level

If possible confounding is suspected, it should ideally be taken into account at the design stage of

the study (see e.g. Rothman and Greenland 1998, Lee 2005). The best way to avoid confounding

bias in a prospective study is ex ante randomisation, i.e. a random allocation of subjects between

the ’treatment’ and the ’control’ groups. The first group receives the treatment and the second a

placebo. Moreover, in view of avoiding investigator bias, the procedure should be kept secret from

the investigator. Actually, double-blind experiments are often conducted in clinical epidemiology,

both the investigator and the subject ignoring whether the latter is put into the treatment group or

into the control group. Randomisation ensures to a high extent that both groups differ only by the

fact that one receives the treatment (the ’cause’) and the other not. The causal relation between

treatment and outcome (e.g. recovery) is not affected by a confounder - observed or unobserved -

due to the fact that the two groups are similar in all respects except treatment/no treatment. In

particular there is no selection bias, though there might be a placebo effect in the no treatment

group. This does not mean however that the target group is homogeneous as concerns treatment

effect; the group may contain sub-groups which vary widely in response to the treatment. In non-

random allocations, there is always a risk that the characteristic on which the allocation is done is

associated with the outcome so that the treatment effect cannot be distinguished from the selection

effect, though matching can to some extent reduce the problem, Lee (2005). On the other hand, the

variables the influences of which are randomised are included in the disturbance term; this increases

the disturbance variance and makes it more difficult to discover an experimental effect, Bollen (1989,

p. 74).

Though quite common in clinical studies, randomisation can however be unethical or impossible
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to conduct. For moral reasons, one may not randomly allocate subjects, for example, between a

smoking group and a non-smoking group, or between receiving a treatment A and no treatment at all

if an alternative treatment is already available. Presently, in clinical trials, the alternative treatment

must be given to the control group instead of a placebo. To give another example, allocating subjects

to different income groups in order to examine the causal relation between income and fertility would

not be unethical but impractical. For these reasons, randomisation is very often impossible in the

social sciences. It is however practised in educational studies, among others, in order to compare

e.g. the performance of students following a physics course based on lectures with a physics course

based on project development. In addition, to avoid course-teacher interaction, teachers are usually

rotated between both types of courses.

In retrospective studies, ex ante randomisation is not possible, as the subjects either have or

have not been subjected to the causal factor and/or to the outcome (Holland and Rubin 1988).

A case-control study on the relation between smoking and lung cancer would compare the past

smoking history of persons alive with lung cancer, i.e. those having experienced the outcome, with

a control group of ex post randomly selected persons without lung cancer (Khlat, 1994 and the other

articles in the special issue of this journal on case-control studies). Furthermore, several controls are

usually matched to each case on some possible major confounders such as age or gender. Matching

does not ensure however that cases and controls are alike on other variables. All possible sources

of confounding bias are not avoided, contrary to ex ante randomisation in prospective studies. In

addition, the comparison between cases and controls can be done in terms of odds ratios but not of

relative risks, as the population exposed to risk is unknown. Finally, only persons alive are included

in the study and they may differ from those who have died. On the other hand, retrospective

case-control studies are much less expensive and time-consuming to carry out than prospective

randomised trials. Case-control studies are too rarely conducted in the social sciences.

6.2 Ex Post Stratification

In non-experimental (observational) studies, prospective or retrospective, the two major ex post

approaches for controlling for confounders are stratification for categorical variables and statistical

adjustment for numerical variables. This distinction is not clear-cut however, as statistical adjust-

ment can be applied to categorical variables using e.g. logit regression, and a numerical variable

can always be categorised - age can be transformed into age groups for example. These approaches

can take into account observed confounders but are hardly able to control for latent ones. Only the

stratification approach will be developed here; for other methods, see e.g. H. Wunsch et al. (2006).

In an observational study, stratification implies conditioning on the confounding variable(s). This

approach will be considered in the case of the well-known Simpson’s paradox; the example is taken

from Pearl (2000, pp. 174-175). In a population suffering from a disease, one sub-population follows
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a treatment and the other does not. The treatment increases the recovery rate when both genders

are combined. On the other hand, when gender is taken into account (controlled for), the drug

decreases the recovery rate both for males and for females, thus the paradox. The following table

(Table 1) distributes the population by treatment, recovery, and gender.

Both genders Recovery No recovery Total Recovery rate

Treatment 20 20 40 .50

No treatment 16 24 40 .40

Total 36 44 80

Males

Treatment 18 12 30 .30

No treatment 7 3 10 .70

Female

Treatment 2 8 10 .20

No treatment 9 21 30 .30

Total 11 29 40

Source: Pearl, 2000

Table 1: Treatment, recovery, and gender

It is easy to show why the treatment seems to have an effect in the general population while this

conclusion does not hold in each gender category. The combined recovery rates in the Treatment

and No treatment groups can be written as follows:

(30x0.60 + 10x0.20)/40 = 0.50 for the Treatment group

(10x0.70 + 30x0.30)/40 = 0.40 for the No treatment group

In the Treatment group, there is a higher proportion of males than females, and males have a

higher recovery rate than females. The opposite is true in the No treatment group. Males thus opt

for treatment more than females and they have a higher recovery rate because, for example, their

compliance might be higher. Gender is therefore a confounding factor, as the two sub-populations

differ by gender structure (i.e. , gender has an impact on opting for treatment or not) and gender

influences the recovery rate.

In order to obtain an unbiased global indicator, gender combined, standardisation is often rec-

ommended: the rates by gender are applied to a same arbitrary standard population structure. This

procedure actually blocks in this example the causal link from gender to treatment use. Blocking

the link from the confounder to either the cause or the outcome is sufficient for controlling for the

confounder. For example, taking the Treatment population structure as standard, one would obtain

the following global rates:
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(30x0.60 + 10x0.20)/40 = 0.50 for the Treatment group

(30x0.70 + 10x0.30)/40 = 0.60 for the No treatment group

This time, the combined standardized rate does lead to the same results as the analysis by

gender. The recovery rate (both genders) is lower in the treatment group than in the recovery

group; furthermore, no interaction is present here as the absolute difference is the same for males

and for females, i.e. 10 per cent. In this situation, the same global result would be obtained whatever

the standard population. The treatment should therefore be discontinued.

However, standardisation breaks down when there are interaction effects (see G. Wunsch (2006),

for a general discussion). In the case of strong interaction, no linear combination of rates can

represent the true results because more than one indicator per group is required in this situation.

If this were the case in the present example, no averaging of the results by gender could lead to a

satisfactory global indicator. For example, consider the situation where the recovery rates would be

0.60 (males) and 0.40 (females) in the treatment group, and respectively 0.70 and 0.30 in the No

treatment group. According to the choice of the arbitrary standard population, one could say that

the global recovery rate in the Treatment group is lower, equal, or higher than in the No treatment

group, a conclusion which is not very informative! No sole measure can tell us that the recovery rate

for males is lower in the treatment group compared to the No treatment group while the converse

is true for females (i.e. strong interaction between treatment and gender).

Suppose now that the hospital, where the patients are treated, is associated both with treatment

and recovery. In addition to taking a sample of patients per hospital, one can also draw a sample

of hospitals and take into account both the treatment effect at the individual level and the hospital

effect at the contextual level, using a multilevel model. Daniel Courgeau has shown that this type of

model elegantly resolves Simpson’s paradox; it can furthermore include interaction terms between

the individual and contextual variables, see Courgeau (2002), Courgeau (2003). The approach lies

however outside the scope of this paper.

7 When to control or not to control

When should we control for a background variable and when should we not control for this variable,

when examining the impact of a treatment/exposure on an outcome in an observational (i.e. .

non-experimental) study? In other words, is this variable a confounder or not? If the background

variable is a common cause of both treatment/exposure and outcome, it should be controlled for.

Let us go back to the previous figures 2 and 4. In Fig. 2, SES has to be controlled for in this model

if one wants to estimate the impact of smoking on cancer of the respiratory system in the absence of

confounding, taking into account the definition of a confounder given in the previous section. SES
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is a common cause of smoking (exposure) and of cancer (outcome) via A, as SES is a parent of

both tabacism and asbestos exposure. In this case, conditional on SES, the variables tabagism and

asbestos exposure should become independent and the association between them should disappear;

if not, a latent confounder(s) is most probably present. To give another example, in the model of

figure (4), if one is interested in the relation between T and C, A should be controlled for as A

is a common cause of both the exposure T and the outcome C. Suppose now that SES is itself

latent, i.e. unobserved. We could also block the impact of SES by controlling for A on the path

from SES to C (the outcome), as A is observed, or by conditioning on an observed intermediate

variable between SES and T (the treatment/exposure). In the absence of such observed intervening

variables, we could also control for any observed variable K, e.g. income, deemed to be highly

correlated with the latent variable SES on the basis of our background knowledge, using K as

a surrogate for SES , Hernán et al. (2002). One’s conceptual framework, based on background

knowledge, theory, and research hypotheses, should take into account for this purpose all known

observed and latent variables relevant for the problem at hand (Gérard, 2006).

Actually, even if SES is observed in the model of figure (2, it would still be advisable to control

for A instead of for the common cause SES if we want to measure the impact of smoking on cancer.

SES might not be the only common cause of T and A, as pointed out in the previous paragraph.

For example, smoking and occupation are gender-dependent; gender would also be a common cause.

To give another example, an unknown gene G may make some smokers and asbestos inhalers more

susceptible to cancer; the effects of smoking and asbestos exposure would then be associated through

the common genotype. The common cause might also be too remote from the causal relations

studied. For example, one could argue that one’s SES is dependent upon one’s parents’ SES and

control for the latter. However, the more remote, the less influence the common cause probably

has on the variables downstream in the model. Therefore, we would usually recommend controlling

for more proximate intervening variables on the path from a common cause to the outcome than

on the common cause itself if the latter is much further upstream in the causal graph, especially

in the social sciences where multiple latent common causes are probably the norm. Note that in

this case one falls back on the classic definition of a confounder as a variable associated with the

treatment/exposure (through the presence of a common ’ancestor’) and having an impact on the

outcome!

Controlling for a variable that is not a confounder can be harmful. In the model of figure (3),

A should not be controlled for when studying the total impact (direct and indirect) of T on C, as

A is not a confounder but an intermediate variable in the indirect path going from T to C through

A, in addition to the direct path T to C. Controlling for A would only be justified if one wished to

evaluate solely the direct effect of T on C.

Furthermore, controlling for a common effect of a treatment and an outcome creates a spurious
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association between the latter two, Hernán et al. (2002), in addition to a possible treatment effect.

This is due to the fact that two causes become correlated when one controls for their common effect

(or collider). As an example, Hernán considers two independent variables - diet and non-diet-related

cancer - which become associated once we control for weight loss, a common effect of both diet and

cancer. One should therefore not condition on a common effect of two (or more) variables.

Another situation where it would be inappropriate to control for a covariate is the case of a

conjunction of causes of the type XZ → Y , i.e. X and Z jointly cause Y . To give an example,

in the case of fertility transition, Ansley Coale (1973) considers that several necessary conditions

(conscious choice, advantage, effective techniques) have to be simultaneously satisfied for fertility to

fall in high fertility countries. If at least one of these conditions is not satisfied, fertility will not

decrease: for a decline in fertility to occur, the conjunction of the three conditions is required. A

causality of conjunctions of causes has been proposed in philosophy by John Stuart Mill (1889) and

Richard Taylor (1966), and by John Mackie (1974) with his INUS causality.

Take the very simple situation where the three variables X, Z, Y , are dichotomous (pres-

ence/absence). One obtains in this case the following results

X Z Y

1 1 1

0 1 0

1 0 0

0 0 0

Controlling for Z (conditioning on Z) means examining the relation between X and Y for Z = 1

or Z = 0. If Z = 1, one would conclude that X is a necessary and sufficient cause of Y because ”if

X , then Y ” and if ”non X, then non Y ”. On the contrary, if Z = 0, one would conclude that X

is not a cause of Y because Y = 0 for both X = 0 and X = 1. The general conclusion would be

the existence of an interaction effect between X and Z as the influence of X on Y varies according

to the values of Z. Actually, this would be a misspecified model; in reality, the interaction between

both causes is so strong that the additive effects of X and of Z on Y disappear in favour of the sole

conjunction XZ influencing Y .

We said above that it is probably better to control for an intervening variable between the

common cause and the effect, rather than for the common cause itself especially if the latter is

remote from the treatment/exposure, due to the possible presence of other - latent - causes or the

temporal reduction of influence for remote common causes. Here is however a case, borrowed from

Pearl (2000) and taken up by Greenland and Brumback (2002), where this strategy would be wrong.

In this model, all the variables are observed. Consider five variables U , V , Z, X, and Y , causally
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related as in the directed graph of figure (24), and suppose we are specifically interested in the

relation X causes Y .
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X Y
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Figure 24: Common causes and intervening variable

In this model, contrary to intuition, it is not sufficient to control for the intervening variable Z.

Even if U and V are independent, they are associated in some strata in Z as they both cause Z.

Due to this association, U is associated with Y through V and V is associated with X through U .

Either V or U must be controlled for to remove the confounding.

Finally, common causes also have an impact on the way we deal with competing risks. For

example, in demography it is customary to estimate a net probability of dying at a given age in the

absence of migration using a counterfactual approach. If migrants had not left the country, what

would have been the probability of dying without the occurrence of migration? One usually assumes

that both processes are independent, leading to the well-known Berkson formulas (see e.g. G.

Wunsch 2002). Suppose now that a common cause such as marital status influences both mortality

and migration, which is actually the case. The two variables are then associated, as Reichenbach’s

conjunctive forks have shown. In this case, migration could select persons with different mortality

probabilities than non-migrants and the classic formulas for computing net probabilities would be

biased. Once again, the counterfactual approach is hardly acceptable except as a very simplified

model; it would be better to control for the common cause(s) if possible.

8 Conclusions

Structural models give a meaningful framework for defining causality. Those models, congruent

with contextual knowledge and characterized by parameters that are stable over a large class of

interventions, allow us to approach causality in terms of exogeneity in a structural conditional

model. It is in this framework that we analyse the issue of confounding and of control.

The presence of confounding factors, i.e. of third factors that screen-off one variable from an-

other, has been been discussed at length in modelling conjunctive forks by Hans Reichenbach. The

philosophical literature has generally followed up this tradition and argued that, since confounders

raise fundamental problems for discovering causal relations, confounders ought to be always con-

trolled for. A closer look at Reichenbach’s modelisation of conjunctive forks reveals, however, that
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the concept of screening-off has predictive compass rather than a causal one. In fact, in ordering

a sequence of events in time, say A, B and C, knowing A is no longer relevant for predicting C

once we know B, and thus we say that B screens-off A from C. The same probabilistic structure

applies to conjunctive forks, where the common cause screens-off one effect from the other. Thus,

once the common cause is taken into account - or controlled for - the correlation between the two

effects vanishes.

Confounders are common causes of both treatment/exposure and of response/outcome. Some

classical definitions of confounding in epidemiology or in demography, based on associations only,

are incomplete as they do not consider the causal paths among the variables which lead to associ-

ation. Confounding is better taken care of by randomization at the design stage of the research.

Randomization is however unethical or impossible to achieve in many social science problems. In

observational studies, conditioning on the observed confounders by stratification is recommended

but the results should not be standardized if there is strong interaction between the confounder and

treatment/exposure on the outcome. If the confounder is latent, controlling for observed intervening

variables or an observed surrogate confounder may sometimes be possible. Even when the common

cause is observed, it might be better in some cases but not in all to control for an intervening factor

if other latent common causes are suspected. The research strategy should be based on a thorough

knowledge of the field and on one’s conceptual framework.

In this structural framework, the concepts of exogeneity and of causality have been explicitly

defined; however, we have shown that the impact of latent variables complicate substantially the

analysis and the operational interpretation of those concepts.
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